Linking Gut Microbiota, Metabolic Syndrome and Metabolic Health among a Sample of Obese Egyptian Females

Authors

  • Nayera E. Hassan Department of Biological Anthropology, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
  • Sahar A. El-Masry Department of Biological Anthropology, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
  • Ayat Nageeb Department of Biological Anthropology, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt https://orcid.org/0000-0003-0260-0395
  • Mohamed S. El Hussieny Department of Biological Anthropology, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt https://orcid.org/0000-0001-9256-5495
  • Aya Khalil Department of Biological Anthropology https://orcid.org/0000-0003-2727-0126
  • Manal Aly Department of Biological Anthropology, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
  • Mohamed Selim Department of Researches and Applications of Complementary Medicine, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
  • Khadija Alian Department of Biological Anthropology, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
  • Enas Abdel Rasheed Department of Clinical and Chemical Pathology, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
  • Mai Magdy Abdel Wahed Department of Clinical and Chemical Pathology, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
  • Darine Amine Department of Biological Anthropology, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt

DOI:

https://doi.org/10.3889/oamjms.2021.7625

Keywords:

Gut microbiota, Metabolic syndrome, C-reactive protein, Egyptian females

Abstract

Background: Studies of the gut microbiota have revealed a great link to obesity and metabolic syndrome (MetS). The aim of this study was to review the dysbiosis of gut microbiota in terms of the components of MetS among a sample of obese Egyptian female patients and to assess current potential gut microbiota targeted therapies for the treatment of MetS. Methods: This study is a cross-sectional study included 82 obese Egyptian women.  All participants were subjected to anthropometric assessment; and  laboratory evaluation of fasting blood sugar (FBS), insulin, C-reactive protein (CRP), lipid profile and insulin resistance (HOMA), in addition to fecal microbiota analysis for Lactobacillus, Bifidobacteria, Firmicutes and Bacteroid. Results: Among obese group with MetS, Firmicutes / Bacteroidetes Ratio was negatively associated with HOMA and positively associated with serum cholesterol and LDL, while lactobacillus was negatively associated with serum cholesterol. Among obese group without MetS, Firmicutes/ Bacteroidetes ratio is negatively associated with WC (central obesity marker) and positively associated with CRP (inflammatory marker), while lactobacillus was positively correlated with FBS and HOMA, and Bifidobacteria was negatively associated with serum cholesterol and LDL.Conclusion: The two beneficial types the Lactobacillus and bifidobacteria supplementation in form of probiotic with therapeutic treatment and decreasing of WChave their important role in controlling and treating hypertension, serum cholesterol and LDL levels, among obese females even with MetS.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

Saklayen MG. The global epidemic of the metabolic syndrome. Curr Hypertens Rep. 2018;20(2):12. https://doi.org/10.1007/s11906-018-0812-z PMid:29480368 DOI: https://doi.org/10.1007/s11906-018-0812-z

Srikanthan K, Feyh A, Visweshwar H, Shapiro JI, Sodhi K. Systematic review of metabolic syndrome biomarkers: A panel for early detection, management, and risk stratification in the west Virginian population. Int J Med Sci. 2016;13(1):25-38. https://doi.org/10.7150/ijms.13800 PMid:26816492 DOI: https://doi.org/10.7150/ijms.13800

Ford ES. The metabolic syndrome and mortality from cardiovascular disease and all-causes: Findings from the national health and nutrition examination survey II mortality study. Atherosclerosis. 2004;173(2):309-14. https://doi.org/10.1016/j.atherosclerosis.2003.12.022 PMid:15064107 DOI: https://doi.org/10.1016/j.atherosclerosis.2003.12.022

Kim MH, Yun KE, Kim J, Park E, Chang Y, Ryu S, et al. Gut microbiota and metabolic health among overweight and obese individuals. Sci Rep. 2020;10(1):19417. https://doi.org/10.1038/s41598-020-76474-8 PMid:33173145 DOI: https://doi.org/10.1038/s41598-020-76474-8

Kootte RS, Levin E, Salojärvi J, Smits LP, Hartstra AV, Udayappan SD, et al. Improvement of insulin sensitivity after lean donor feces in metabolic syndrome is driven by baseline intestinal microbiota composition. Cell Metab. 2017;26(4):611-9. https://doi.org/10.1016/j.cmet.2017.09.008 PMid:28978426 DOI: https://doi.org/10.1016/j.cmet.2017.09.008

He Y, Wu W, Wu S, Zheng HM, Li P, Sheng HF, et al. Linking gut microbiota, metabolic syndrome and economic status based on a population-level analysis. Microbiome. 2018;6(1):172. https://doi.org/10.1186/s40168-018-0557-6. PMid:30249275 DOI: https://doi.org/10.1186/s40168-018-0557-6

Wutthi-In M, Cheevadhanarak S, Yasom S, Kerdphoo S, Thiennimitr P, Phrommintikul A, et al. Gut microbiota profiles of treated metabolic syndrome patients and their relationship with metabolic health. Sci Rep. 2020;10(1):10085. https://doi.org/10.1038/s41598-020-67078-3 PMid:32572149 DOI: https://doi.org/10.1038/s41598-020-67078-3

Moreira AP, Teixeira TF, Gouveia Peluzio MC, de Cássia Gonçalves Alfenas R. Gut microbiota and the development of obesity. Nutr Hosp. 2012;27(5):1408-14. https://doi.org/10.3305/nh.2012.27.5.5887 PMid:23478685

Muscogiuri G, Cantone E, Cassarano S, Tuccinardi D, Barrea L, Savastano S, et al. Gut microbiota: A new path to treat obesity. Int J Obes Suppl. 2019;9(1):10-9. https://doi.org/10.1038/s41367-019-0011-7 PMid:31391921 DOI: https://doi.org/10.1038/s41367-019-0011-7

Henao-Mejia J, Elinav E, Jin C, Hao L, Mehal WZ, Strowig T, et al. Inflammasomemediateddysbiosis regulates progression of NAFLD and obesity. Nature. 2012;482(7384):179-85. https://doi.org/10.1038/nature10809 PMid:22297845 DOI: https://doi.org/10.1038/nature10809

Lim MY, You HJ, Yoon HS, Kwon B, Lee JY, Lee S, et al. The effect of heritability and host genetics on the gut microbiota and metabolic syndrome. Gut. 2017;66(6):1031-8. https://doi.org/10.1136/gutjnl-2015-311326 PMid:27053630 DOI: https://doi.org/10.1136/gutjnl-2015-311326

Yong, VB. The role of the microbiome in human health and disease: An introduction for clinicians. BMJ. 2017;356:j831. https://doi.org/10.1136/bmj.j831 PMid:28298355 DOI: https://doi.org/10.1136/bmj.j831

Rinninella E, Raoul P, Cintoni M, Franceschi F, Miggiano GA, Gasbarrini A, Mele MC. What is the healthy gut microbiota composition? A changing ecosystem across age, environment, diet, and diseases. Microorganisms. 2019;7(1):14. https://doi.org/10.3390/microorganisms7010014 PMid:30634578 DOI: https://doi.org/10.3390/microorganisms7010014

Magne F, Gotteland M, Gauthier L, Zazueta A, Pesoa S, Navarrete P, Balamurugan R. The firmicutes/bacteroidetes ratio: A relevant marker of gut dysbiosis in obese patients? Nutrients. 2020;12(5):1474. https://doi.org/10.3390/nu12051474 PMid:32438689 DOI: https://doi.org/10.3390/nu12051474

Świątecka D, Narbad A, Ridgway KP, Kostyra H. The study on the impact of glycated pea proteins on human intestinal bacteria.Int J Food Microbiol. 2011;145(1):267-72. https://doi.org/10.1016/j.ijfoodmicro.2011.01.002 PMid:21276631 DOI: https://doi.org/10.1016/j.ijfoodmicro.2011.08.017

David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505(7484):559-63. https://doi.org/10.1038/nature12820 PMid:24336217 DOI: https://doi.org/10.1038/nature12820

Fava F, Gitau R, Griffin BA, Gibson GR, Tuohy KM, Lovegrove JA. The type and quantity of dietary fat and carbohydrate alter faecalmicrobiome and short-chain fatty acid excretion in a metabolic syndrome “at-risk” population. Int J Obes (Lond). 2013;37(2):216-23. https://doi.org/10.1038/ijo.2012.33 PMid:22410962 DOI: https://doi.org/10.1038/ijo.2012.33

Eid N, Enani S, Walton G, Corona G, Costabile A, Gibson G, et al. The impact of date palm fruits and their component polyphenols, on gut microbial ecology, bacterial metabolites and colon cancer cell proliferation. J Nutr Sci. 2014;3:e46. https://doi.org/10.1017/jns.2014.16 PMid:26101614 DOI: https://doi.org/10.1017/jns.2014.16

Carvalho-Wells AL, Helmolz K, Nodet C, Molzer C, Leonard C, McKevith B, et al. Determination of the in vivo prebiotic potential of a maize-based whole grain breakfast cereal: A human feeding study. Br J Nutr. 2010;104(9):1353-6. https://doi.org/10.1017/ S0007114510002084 PMid:20487589 DOI: https://doi.org/10.1017/S0007114510002084

Mantegazza C, Molinari P, D’Auria E, Sonnino M, Morelli L, Zuccotti GV. Probiotics and antibiotic-associated diarrhea in children. A review and new evidence on Lactobacillus rhamnosus GG during and after antibiotic treatment. Pharmacol Res. 2018;128:63-72. https://doi.org/10.1016/j.phrs.2017.08.001 PMid:28827186 DOI: https://doi.org/10.1016/j.phrs.2017.08.001

Hiernaux J, Tanner JM. Growth and physical studies. In: Weiner JS, Lourie SA, editors. A Guide to Field Methods. Oxford, UK: IBP, Blackwell Scientific Publications; 1969. p. 624.

Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: Insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28(7):412-9. https://doi.org/10.1007/BF00280883 PMid:3899825 DOI: https://doi.org/10.1007/BF00280883

Mitra B, Panja M. High sensitive C-reactive protein: A novel biochemical markers and its role in coronary artery disease. J Assoc Physicians India. 2005;53:25-32. PMid:15857009

Friedewald WT, Levy RI, Fredrickson DS. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem. 1972;18(6):499-502. PMid:4337382 DOI: https://doi.org/10.1093/clinchem/18.6.499

Alberti KG, Eckel RH, Grundy SM, Zimmet PZ, Cleeman JI, Donato KA, et al. Harmonizing the metabolic syndrome: A joint interim statement of the international diabetes federation task force on epidemiology and prevention; national heart, lung, and blood institute; American heart association; world heart federation; international atherosclerosis society; and international association for the study of obesity. Circulation. 2009;120(16):1640-5. https://doi.org/10.1161/CIRCULATIONAHA.109.192644 PMid:19805654 DOI: https://doi.org/10.1161/CIRCULATIONAHA.109.192644

Wheeler HE, Shah KP, Brenner J, Garcia T, Aquino-Michaels K, GTEx Consortium, et al. Survey of the heritability and sparse architecture of gene expression traits across human tissues. PLoS Genet. 2016;12(11):e1006423. https://doi.org/10.1371/journal.pgen.1006423 PMid:27835642 DOI: https://doi.org/10.1371/journal.pgen.1006423

Stephens RW, Arhire L, Covasa M. Gut microbiota: From microorganisms to metabolic organ influencing obesity. Obesity (Silver Spring). 2018;26(5):801-9. https://doi.org/10.1002/oby.22179 PMid:29687647 DOI: https://doi.org/10.1002/oby.22179

Wang PX, Deng XR, Zhang CH, Yuan HJ. Gut microbiota and metabolic syndrome. Chin Med J (Engl). 2020;133(7):808-16. https://doi.org/10.1097/CM9.0000000000000696 PMid:32106124 DOI: https://doi.org/10.1097/CM9.0000000000000696

Yu R, Kim CS, Kang JH. Inflammatory components of adipose tissue as target for treatment of metabolic syndrome. Forum Nutr. 2009;61:95-103. https://doi.org/10.1159/000212742 PMid:19367114 DOI: https://doi.org/10.1159/000212742

Ji YS, Kim HN, Park HJ, Lee JE, Yeo SY, Yang JS, et al. Modulation of the murine microbiome with a concomitant anti-obesity effect by Lactobacillus rhamnosus GG and Lactobacillus sakei NR28. Benef Microbes. 2012;3(1):13-22. https://doi.org/10.3920/BM2011.0046 PMid:22348905 DOI: https://doi.org/10.3920/BM2011.0046

Ji Y, Park S, Park H, Hwang E, Shin H, Pot B, Holzapfel WH. Modulation of active gut microbiota by Lactobacillus rhamnosus GG in a diet induced obesity murine model. Front Microbiol. 2018;9:710. https://doi.org/10.3389/fmicb.2018.00710 PMid:29692770 DOI: https://doi.org/10.3389/fmicb.2018.00710

Wilmanski T, Diener C, Rappaport N, Patwardhan S, Wiedrick J, Lapidus J, et al. Gut microbiome pattern reflects healthy ageing and predicts survival in humans. Nat Metab. 2021;3(2):274-86. https://doi.org/10.1038/s42255-021-00348-0 PMid:33619379 DOI: https://doi.org/10.1038/s42255-021-00348-0

Wilck N, Matus MG, Kearney SM, Olesen SW, Forslund K, Bartolomaeus H, et al. Salt-responsive gut commensal modulates T H 17 axis and disease. Nature. 2017;551(7682):585-9. https://doi.org/10.1038/nature24628 PMid:29143823 DOI: https://doi.org/10.1038/nature24628

Adnan S, Nelson JW, Ajami NJ, Venna VR, Petrosino JF, Bryan RM, et al. Alterations in the gut microbiota can elicit hypertension in rats. Physiol Genomics. 2016;49(2):96-104. https://doi.org/10.1152/physiolgenomics.00081.2016 PMid:28011881 DOI: https://doi.org/10.1152/physiolgenomics.00081.2016

Schwiertz A, Taras D, Schäfer K, Beijer S, Bos NA, Donus C, et al. Microbiota and SCFA in lean and overweight healthy subjects. Obesity (Silver Spring). 2010;18(1):190-5. https://doi.org/10.1038/oby.2009.167 PMid:19498350 DOI: https://doi.org/10.1038/oby.2009.167

Crovesy L, Masterson D, Rosado EL. Profile of the gut microbiota of adults with obesity: A systematic review. Eur J Clin Nutr. 2020;74(9):1251-62. https://doi.org/10.1038/s41430-020-0607-6 PMid:32231226 DOI: https://doi.org/10.1038/s41430-020-0607-6

Mahowald MA, Rey FE, Seedorf H, Turnbaugh PJ, Fulton RS, Wollam A, et al. Characterizing a model human gut microbiota composed of members of its two dominant bacterial phyla. Proc Natl Acad Sci USA. 2009;106(14):5859-64. https://doi.org/10.1073/pnas.0901529106 PMid:19321416 DOI: https://doi.org/10.1073/pnas.0901529106

Davis CD. The gut microbiome and its role in obesity. Nutr Today. 2016;51(4):167-74. https://doi.org/10.1097/NT.0000000000000167 PMid:27795585 DOI: https://doi.org/10.1097/NT.0000000000000167

Sonnenburg JL, Chen CT, Gordon JI. Genomic and metabolic studies of the impact of probiotics on a model gut symbiont and host. PLoS Biol. 2006;4(12):e413. https://doi.org/10.1371/journal.pbio.0040413 PMid:17132046 DOI: https://doi.org/10.1371/journal.pbio.0040413

Yin YN, Yu QF, Fu N, Liu XW, Lu FG. Effects of four Bifidobacteria on obesity in high-fat diet induced rats. World J Gastroenterol. 2010;16(27):3394-401. https://doi.org/10.3748/wjg.v16.i27.3394 PMid:20632441 DOI: https://doi.org/10.3748/wjg.v16.i27.3394

Kassaian N, Aminorroaya A, Feizi A, Jafari P, Amini M. The effects of probiotic and synbiotic supplementation on metabolic syndrome indices in adults at risk of Type 2 diabetes: Study protocol for a randomized controlled trial. Trials. 2017;18(1):148. https://doi.org/10.1186/s13063-017-1885-8 PMid:28356129 DOI: https://doi.org/10.1186/s13063-017-1885-8

Kassaian N, Feizi A, Aminorroaya A, Jafari P, Ebrahimi MT, Amini M. The effects of probiotics and synbiotic supplementation on glucose and insulin metabolism in adults with prediabetes: A double-blind randomized clinical trial. Acta Diabetol. 2018;55(10):1019-28. https://doi.org/10.1007/s00592-018-1175-2 PMid:29931423 DOI: https://doi.org/10.1007/s00592-018-1175-2

Sproston NR, Ashworth JJ. Role of C-reactive protein at sites of inflammation and infection. Front Immunol. 2018;9:754. https://doi.org/10.3389/fimmu.2018.00754 PMid:29706967 DOI: https://doi.org/10.3389/fimmu.2018.00754

Al Bander Z, Nitert MD, Mousa A, Naderpoor N. The Gut microbiota and inflammation: An overview. Int J Environ Res Public Health. 2020;17(20):7618. https://doi.org/10.3390/ijerph17207618 PMid:33086688 DOI: https://doi.org/10.3390/ijerph17207618

Guo Z, Liu XM, Zhang QX, Shen Z, Tian FW, Zhang H, et al. Influence of consumption of probiotics on the plasma lipid profile: A meta-analysis of randomised controlled trials. Nutr Metab Cardiovasc Dis. 2011;21(11):844-50. https://doi.org/10.1016/j.numecd.2011.04.008 PMid:21930366 DOI: https://doi.org/10.1016/j.numecd.2011.04.008

Cho YA, Kim J. Effect of probiotics on blood lipid concentrations: A meta-analysis of randomized controlled trials. Medicine (Baltimore). 2015;94(43):e1714. https://doi.org/10.1097/MD.0000000000001714 PMid:26512560 DOI: https://doi.org/10.1097/MD.0000000000001714

Bernini LJ, Simão AN, Alfieri DF, Lozovoy MA, Mari NL, de Souza CH, et al. Beneficial effects of Bifidobacterium lactis on lipid profile and cytokines in patients with metabolic syndrome: A randomized trial. Effects of probiotics on metabolic syndrome. Nutrition. 2016;32(6):716-9. https://doi.org/10.1016/j.nut.2015.11.001 PMid:27126957 DOI: https://doi.org/10.1016/j.nut.2015.11.001

Wu Y, Zhang Q, Ren Y, Ruan Z. Effect of probiotic Lactobacillus on lipid profile: A systematic review and meta-analysis of randomized, controlled trials. PLoS One. 2017;12(6):e0178868. https://doi.org/10.1371/journal.pone.0178868 PMid:28594860 DOI: https://doi.org/10.1371/journal.pone.0178868

Eid HM, Wright ML, Anil Kumar NV, Qawasmeh A, Hassan ST, Mocan A, et al. Significance of microbiota in obesity and metabolic diseases and the modulatory potential by medicinal plant and food ingredients. Front Pharmacol. 2017;8:387. https://doi.org/10.3389/fphar.2017.00387 PMid:28713266 DOI: https://doi.org/10.3389/fphar.2017.00387

Liu Y, Song X, Zhou H, Zhou X, Xia Y, Dong X, et al. Gut microbiome associates with lipid-lowering effect of Rosuvastatin in vivo. Front Microbiol. 2018;9:530. https://doi.org/10.3389/fmicb.2018.00530 PMid:29623075 DOI: https://doi.org/10.3389/fmicb.2018.00530

Downloads

Published

2021-11-18

How to Cite

1.
Hassan NE, El-Masry SA, Nageeb A, El Hussieny MS, Khalil A, Aly M, Selim M, Alian K, Abdel Rasheed E, Abdel Wahed MM, Amine D. Linking Gut Microbiota, Metabolic Syndrome and Metabolic Health among a Sample of Obese Egyptian Females. Open Access Maced J Med Sci [Internet]. 2021 Nov. 18 [cited 2024 Nov. 21];9(A):1123-31. Available from: https://oamjms.eu/index.php/mjms/article/view/7625