Comparing Levels of Urinary Phthalate Metabolites in Egyptian Children with Autism Spectrum Disorders and Healthy Control Children: Referring to Sources of Phthalate Exposure

Authors

  • Manal A. Shehata Department of Child Health, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
  • Ebtissam M. Salah El-Din Department of Child Health, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
  • Mai M. Youssef Department of Child Health, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
  • Mones M. Abushady Department of Child Health, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
  • Inas R. El-Alameey Department of Child Health, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt; Clinical Nutrition Department, Faculty of Applied Medical Sciences, Taibah University, Saudi Arabia
  • Engy A. Ashaat Clinical Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Giza, Egypt
  • Amr S. Gouda Biochemical Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Giza, Egypt
  • Walaa S. Nazim Biochemical Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Giza, Egypt

DOI:

https://doi.org/10.3889/oamjms.2021.7635

Keywords:

Autism spectrum disorders, Children, Environmental risk factors, Phthalate exposure

Abstract

Background: Evidence supporting environmental risk factors of autism spectrum disorder (ASD) is rising. Phthalates are assumed to contribute to this risk due to their extensive use in daily life as plasticizers and additives in numerous customer products. Phthalates are also accused as a neurotoxic agent affecting brain development.

Aim: The main objective of this study is to compare the concentrations of urinary phthalate metabolites as biomarkers of phthalate exposure in children with autism to that of a healthy control group and to compare their exposure to suspected environmental sources of phthalate.

Methods: It was a case-control study; conducted over a period of one year. Thirty-eight children with ASD and 99 apparently healthy children comprised the control group, were enrolled in the study. Urinary concentrations of four phthalate metabolites were measured, using a combination of solid phase extraction, high pressure liquid chromatography, and tandem mass spectrometry.

Results: Children with ASD comprised 38 children (32 boys and 6 girls), their mean age was 8.95 + 4.17 years. There were significant higher levels of urinary Mono (2ethylhexyl) phthalate (MEHP), mono benzyl, and mono butyl phthalates in cases vs. controls with p value equals (0.006, 0.017 and <0.001) respectively. Regression analysis revealed that male gender and the level of mono butyl are the main predictors of ASD (p<0.001).

Conclusion: This study suggested a link between phthalates and ASD with higher urinary levels of phthalate metabolites in children with ASD. These high levels are either due to increased exposure or defective metabolism in children with ASD. The study declined any relationship of the studied sources of phthalate exposure to ASD except the exposure to wall painting with plastic.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders-5 (DSM-5). Washington, DC: American Psychiatric Association; 2013. DOI: https://doi.org/10.1176/appi.books.9780890425596

Centers for Disease Control and Prevention. Data and Statistics on Autism Spectrum Disorder. Atlanta, Georgia, United States: Centers for Disease Control and Prevention; 2020.

Alnemary F, Alnemary F, Alamri Y. Autism research: Where does the Arab world stand? Rev J Autism Dev Disord. 2017;4(2):157-64. https://doi.org/10.1007/s40489-017-0104-6 DOI: https://doi.org/10.1007/s40489-017-0104-6

Hertz-Picciotto I, Delwiche L. The rise in autism and the role of age at diagnosis. Epidemiology. 2009;20(1):84-90. https://doi.org/10.1097/EDE.0b013e3181902d15 PMid:19234401 DOI: https://doi.org/10.1097/EDE.0b013e3181902d15

Kalkbrenner AE, Schmidt RJ, Penlesky AC. Environmental chemical exposures and autism spectrum disorders: A review of the epidemiological evidence. Curr Probl Pediatr Adolesc Health Care. 2014;44(10):277-318. https://doi.org/10.1016/j.cppeds.2014.06.001 PMid:25199954 DOI: https://doi.org/10.1016/j.cppeds.2014.06.001

Ashaat EA, Taman KH, Kholoussi N, El Ruby MO, Zaki ME, El Wakeel MA, et al. Altered adaptive cellular immune function in a group of Egyptian children with autism. J Clin Diagn Res. 2017;11(10):SC14-7. https://doi.org/10.7860/JCDR/2017/28124/10782

Abd-Allah NA, Ibrahim OM, Elmalt HA, Shehata MA, Hamed RA, Elsaadouni NM, et al. Thioredoxin level and inflammatory markers in children with autism spectrum disorders. Middle East Curr Psychiatry. 2020;27:11. https://doi.org/10.1186/s43045-020-00021-4 DOI: https://doi.org/10.1186/s43045-020-00021-4

Colborn T. Neurodevelopment and endocrine disruption. Environ Health Perspect. 2004;112(9):944-9. https://doi.org/10.1289/ehp.6601 PMid:15198913 DOI: https://doi.org/10.1289/ehp.6601

Kim SM, Han DH, Lyoo HS, Min KJ, Kim KH, Renshaw P. Exposure to environmental toxins in mothers of children with autism spectrum disorder. Psychiatry Investig. 2010;7(2):122-7. https://doi.org/10.4306/pi.2010.7.2.122 PMid:20577621 DOI: https://doi.org/10.4306/pi.2010.7.2.122

Miodovnik A, Edwards A, Bellinger DC, Hauser R. Developmental neurotoxicity of orthophthalate diesters: Review of human and experimental evidence. Neurotoxicology 2014;41:112-22. DOI: https://doi.org/10.1016/j.neuro.2014.01.007

World Health Organization. Endocrine Disrupters and Child Health Possible Developmental Early Effects of Endocrine Disrupters on Child Health. World Health Organization; 2012. Available from: https://apps.who.int/iris/handle/10665/75342. [Last accessed on 2018 Oct 01].

Braun JM, Sathyanarayana S, Hauser R. Phthalate exposure and children’s health. Curr Opin Pediatr. 2013;25(2):247-54. https://doi.org/10.1097/MOP.0b013e32835e1eb6 PMid:23429708 DOI: https://doi.org/10.1097/MOP.0b013e32835e1eb6

Oulhote Y, Lanphear B, Braun JM, Webster GM, Arbuckle TE, Etzel T, et al. Gestational exposures to phthalates and folic acid, and autistic traits in Canadian children. Environ Health Perspect. 2020;128(2):27004. https://doi.org/10.1289/EHP5621 PMid:32073305 DOI: https://doi.org/10.1289/EHP5621

Jeddi ZM, Gorji ME, Rietjens IM, Louisse J, de Bruin YB, Liska R. Biomonitoring and subsequent risk assessment of combined exposure to phthalates in Iranian children and adolescents. Int J Environ Res Public Health. 2018;15(11):2336. https://doi.org/10.3390/ijerph15112336 PMid:30360526 DOI: https://doi.org/10.3390/ijerph15112336

Fromme H, Bolte G, Koch HM, Angerer J, Boehmer S, Drexler H, et al. Occurrence and daily variation of phthalate metabolites in the urine of an adult population. Int J Hyg Environ Health. 2007;210(1):21-33. https://doi.org/10.1016/j.ijheh.2006.09.005 PMid:17182278 DOI: https://doi.org/10.1016/j.ijheh.2006.09.005

Koch HM, Wittassek M, Bruning T, Angerer J, Heudorf U. Exposure to phthalates in 5-6 years old primary school starters in Germany a human biomonitoring study and a cumulative risk assessment. Int J Hyg Environ Health. 2011;214(3):188-95. https://doi.org/10.1016/j.ijheh.2011.01.009 PMid:21371937 DOI: https://doi.org/10.1016/j.ijheh.2011.01.009

Völkel W, Kiranoglu M, Schuster R, Fromme H, Mnet HB. Phthalate intake by infants calculated from biomonitoring data. Toxicol Lett. 2014;3225(2):222-9. https://doi.org/10.1016/j.toxlet.2013.12.012 PMid:24374175 DOI: https://doi.org/10.1016/j.toxlet.2013.12.012

Gao CJ, Liu LY, Ma WL, Ren NQ, Guo Y, Zhu NZ, et al. Phthalate metabolites in urine of Chinese young adults: Concentration, profile, exposure and cumulative risk assessment. Sci Total Environ. 2016;1543(Pt A):19-27. https://doi.org/10.1016/j.scitotenv.2015.11.005 PMid:26575634 DOI: https://doi.org/10.1016/j.scitotenv.2015.11.005

Wang Y, Zhu H, Kannan K. A review of biomonitoring of phthalate exposures. Toxics. 2019;7(2):1-28. https://doi.org/10.3390/toxics7020021 PMid:30959800 DOI: https://doi.org/10.3390/toxics7020021

Fox DA, Opanashuk L, Zharkovsky A, Weiss B. Gene-chemical interactions in the developing mammalian nervous system: Effects on proliferation, neurogenesis and differentiation. Neurotoxicology. 2010;31(5):589-97. https://doi.org/10.1016/j.neuro.2010.03.007 PMid:20381523 DOI: https://doi.org/10.1016/j.neuro.2010.03.007

Whyatt RM, Liu X, Rauh VA, Calafat AM, Just AC, Hoepner L, et al. Maternal prenatal urinary phthalate metabolite concentrations and child mental, psychomotor and behavioral development at age three years. Environ Health Perspect. 2011;120(2):290-5. https://doi.org/10.1289/ehp.1103705 PMid:21893441 DOI: https://doi.org/10.1289/ehp.1103705

Jeddi MZ, Janani L, Memari AH, Akhondzadeh S, Yunesian M. The role of phthalate esters in autism development: A systematic review. Environ Res. 2016;151:493-504. https://doi.org/10.1016/j.envres.2016.08.021 PMid:27567353 DOI: https://doi.org/10.1016/j.envres.2016.08.021

Stein TP, Schluter MD, Steer RA, Ming X. Autism and phthalate metabolite glucuronidation. J Autism Dev Disord. 2013;43(11):2677-85. https://doi.org/10.1007/s10803-013-1822-y PMid:23575644 DOI: https://doi.org/10.1007/s10803-013-1822-y

Machin D, Campbell M, Fayers P, Pinol A. Sample Size Tables for Clinical Studies. 2nd ed. Malden, MA: Blackwell Science; 1997.

Jerrold HZ. Biostatistical Analysis. 2nd ed. Englewood Cliffs, New Jersey: Prentice-Hall; 1984.

Jung K, Oh H, Ryu JY, Kim DH, Lee S, Son BC, et al. Relationship between housing characteristics, lifestyle factors and phthalates exposure: The first Korean national environmental health survey (2009-2011). Ann Occup Environ Med. 2015;23:27-33. https://doi.org/10.1186/s40557-015-0078-8 PMid:26705476 DOI: https://doi.org/10.1186/s40557-015-0078-8

Schopler E, Reichler RJ, Renner BR. The Childhood Autism Rating Scale (CARS): For Diagnostic Screening and Classification of Autism. New York: Irvington; 1986. p. 63.

Cho SC, Bhang SY, Hong YC, Shin MS, Kim BN, Kim JW, et al. Relationship between environmental phthalate exposure and the intelligence of school-age children. Environ Health Perspect. 2010;118(7):1027-32. https://doi.org/10.1289/ehp.0901376 PMid:20194078 DOI: https://doi.org/10.1289/ehp.0901376

Kim Y, Ha EH, Kim EJ, Park H, Ha M, Kim JH, et al. Prenatal exposure to phthalates and infant development at 6 months: Prospective mothers and children’s environmental health (moceh) study. Environ Health Perspect. 2011;119(10):1495-500. https://doi.org/10.1289/ehp.1003178 PMid:21737372 DOI: https://doi.org/10.1289/ehp.1003178

Koch HM, Drexler H, Angerer J. Internal exposure of nursery-school children and their parents and teachers to di (2-ethylhexyl) phthalate (DEHP). Int J Hyg Environ Health. 2004;207(1):15-22. https://doi.org/10.1078/1438-4639-00270 PMid:14762970 DOI: https://doi.org/10.1078/1438-4639-00270

Teitelbaum SL, Britton JA, Calafat AM, Ye X, Silva MJ, Reidy JA, et al. Temporal variability in urinary concentrations of phthalate metabolites, phytoestrogens and phenols among minority children in the United States. Environ Res. 2008;106(2):257-69. PMid:17976571 DOI: https://doi.org/10.1016/j.envres.2007.09.010

Parlett LE, Calafat AM, Swan SH. Women’s exposure to phthalates in relation to use of personal care products. J Exposure Sci Environ Epidemiol. 2013;23(2):197-206. https://doi.org/10.1038/jes.2012.105 PMid:23168567 DOI: https://doi.org/10.1038/jes.2012.105

Testa C, Nuti F, Hayek J, De Felice C, Chelli M, Rovero P, et al. Di-(2-ethylhexyl) phthalate and autism spectrum disorders. ASN Neuro. 2012;4(4):223-9. https://doi.org/10.1042/AN20120015 PMid:22537663 DOI: https://doi.org/10.1042/AN20120015

Benjamin S, Masai E, Kamimura N, Takahashi K, Anderson RC, Faisal PA. Phthalates impact human health: Epidemiological evidences and plausible mechanism of action. J Hazard Mater. 2017;15(340):360-83. https://doi.org/10.1016/j.jhazmat.2017.06.036 PMid:28800814 DOI: https://doi.org/10.1016/j.jhazmat.2017.06.036

Navarro R, Perrino MP, Tardajos MG, Reinecke H. Phthalate plasticizers covalently bound to PVC: Plasticization with suppressed migration. Macromolecules. 2010;43:2377-81. DOI: https://doi.org/10.1021/ma902740t

Banderali G, Martelli A, Landi M, Moretti F, Betti F, Radaelli G, et al. Short and long term health effects of parental tobacco smoking during pregnancy and lactation: A descriptive review. J Transl Med. 2015;13:327. https://doi.org/10.1186/s12967-015-0690-y PMid:26472248 DOI: https://doi.org/10.1186/s12967-015-0690-y

Ekblad M, Korkeila J, Lehtonen L. Smoking during pregnancy affects foetal brain development. Acta Paediatr. 2015;104(1):12-8. https://doi.org/10.1111/apa.12791 PMid:25169748 DOI: https://doi.org/10.1111/apa.12791

Jung Y, Hsieh LS, Lee AM, Zhou Z, Coman D, Heath CJ. An epigenetic mechanism mediates developmental nicotine effects on neuronal structure and behavior. Nat Neurosci. 2016;19(7):905-14. https://doi.org/10.1038/nn.4315 PMid:27239938 DOI: https://doi.org/10.1038/nn.4315

Engel SM, Patisaul HB, Brody C, Hauser R, Zota AR, Bennet DH, et al. Neurotoxicity of ortho-phthalates: Recommendations for critical policy reforms to protect brain development in children. Am J Public Health. 2021;111(4):687-95. https://doi.org/10.2105/AJPH.2020.306014 PMid:33600256 DOI: https://doi.org/10.2105/AJPH.2020.306014

Lai MC, Lombardo MV, Baron-Cohen S. Autism. Lancet. 2014;383(9920):896-910. https://doi.org/10.1016/ S0140-6736(13)61539-1 PMid:24074734 DOI: https://doi.org/10.1016/S0140-6736(13)61539-1

Schaafsma SM, Pfaff DW. Etiologies underlying sex differences in autism spectrum disorders. Front Neuroendocrinol. 2014;35(3):255-71. https://doi.org/10.1016/j.yfrne.2014.03.006 PMid:24705124 DOI: https://doi.org/10.1016/j.yfrne.2014.03.006

Ejaredar M, Nyanza EC, Ten Eycke K, Dewey D. Phthalate exposure and children neurodevelopment: A systematic review. Environ Res. 2015;142:51-60. https://doi.org/10.1016/j.envres.2015.06.014 PMid:26101203 DOI: https://doi.org/10.1016/j.envres.2015.06.014

Dutta S, Haggerty DK, Rappolee DA, Ruden DM. Phthalate exposure and long-term epigenomic consequences: A review. Front Genet. 2020;6(11):405. https://doi.org/10.3389/fgene.2020.00405 PMid:32435260 DOI: https://doi.org/10.3389/fgene.2020.00405

Tseng IL, Yang YF, Yu CW, Li WH, Liao VH. Phthalates induce neurotoxicity affecting locomotor and thermotactic behaviors and AFD neurons through oxidative stress in Caenorhabditis elegans. PLoS One. 2013;8(12):e82657. https://doi.org/10.1371/journal.pone.0082657 PMid:24349328 DOI: https://doi.org/10.1371/journal.pone.0082657

Downloads

Published

2021-12-09

How to Cite

1.
Shehata MA, Salah El-Din EM, Youssef MM, Abushady MM, El-Alameey IR, Ashaat EA, Gouda AS, Nazim WS. Comparing Levels of Urinary Phthalate Metabolites in Egyptian Children with Autism Spectrum Disorders and Healthy Control Children: Referring to Sources of Phthalate Exposure. Open Access Maced J Med Sci [Internet]. 2021 Dec. 9 [cited 2024 Mar. 28];9(B):1640-6. Available from: https://oamjms.eu/index.php/mjms/article/view/7635

Most read articles by the same author(s)

1 2 > >>