Association between Foxp3 Tumor Infiltrating Lymphocyte Expression and Response After Chemoradiation in Nasopharyngeal Carcinoma
DOI:
https://doi.org/10.3889/oamjms.2021.7639Keywords:
Nasopharyngeal carcinoma, Foxp3, Chemoradiation therapyAbstract
BACKGROUND: Nasopharyngeal carcinoma (NPC) is a carcinoma originating from the surface epithelium of the nasopharynx with the highest incidence in China and South East Asia. Currently, many researchers are developing tumor microenvironment which can be assessed by tumor-infiltrating lymphochyte, and its association with treatment response in several tumors, including NPC. Foxp3, known as a regulatory T cell (Treg) marker, plays a role in the immunoregulatory environment of tumor cells and can be used as a prognostic factor. The relationship between Foxp3 expression and treatment response is considered as one of the factors affecting the prognosis of NPC.
AIM: This study aims to determine the relationship between Foxp3 expression and treatment response in NPC.
MATERIALS AND METHODS: A cross-sectional study was done to analyze the association between Foxp3 and treatment response in NPC. This study included 60 samples who were diagnosed with non-keratinizing NPC at the Department of Anatomical Pathology, Faculty of Medicine Universitas Indonesia/Cipto Mangunkusumo Hospital from January 2018 until December 2020. Immunohistochemistry was done to evaluate the expression of Foxp3. Foxp3 expression was evaluated in the intratumoral and peritumoral areas.
RESULTS: Among 60 patients, the number of males were more than females (66.7%, 33.3%, respectively) with a ratio of 2:1. There was statistically significant difference between intratumoral and total Foxp3 expression and treatment response (p < 0.05, p = 0.001, respectively); however, no significant differences found between peritumoral Foxp3 expression and treatment response (p = 0.114).
CONCLUSION: Foxp3 expression had a statistically significant relationship with response therapy after chemoradiation.Downloads
Metrics
Plum Analytics Artifact Widget Block
References
Petersson BF, Bell D, El-Mofty SK, Gillison M, Lewis JS, Nadal A, et al. Nasopharyngeal carcinoma. In: El-Naggar AK, Chan JK, Grandis JR, Takata T, Slootweg PJ, editors. WHO Classification of Head and Neck Tumours. Lyon: IARC; 2016. p. 64-70.
Wei KR, Zheng RS, Zhang SW, Liang ZH, Qu ZX, Chen QW. Naropharyngeal carcinoma incidence and mortality in Tiongkok in 2010. Chin J Cancer. 2014;33:381-7. https://doi.org/10.5732/cjc.014.10086 PMid:25096544
Adham M, Kurniawan A, Muhtadi A, Roezin A, Hermani B, Gondhowiardjo S, et al. Nasopharyngeal carcinoma in Indonesia: Epidemiology, incidence, signs, and symptoms at presentation. Chin J Cancer. 2012;31(4):186-96. https://doi.org/10.5732/cjc.011.10328 PMid:22313595 DOI: https://doi.org/10.5732/cjc.011.10328
Badan Registrasi Kanker Perhimpunan Dokter Spesialis Patologi Indonesia. Kanker di INDONESIA Tahun 2015: Data Histopatologik, Jakarta; 2017.
Panduan Nasional Penanganan Kanker Nasofaring. Komite Nasional Penganggulangan Kanker. Jakarta: Kementerian kesehatan republik Indonesia; 2017.
Wondergem NE, Nauta IH, Muijlwijk T, Leemans CR, van de ven R. The immune microenvironment in head and neck squamous cell carcinoma: On subsets and subsites. Curr Oncol Rep. 2020;81:1-14. DOI: https://doi.org/10.1007/s11912-020-00938-3
Kara I, Cagli S, Vural A, Yuce I, Gundog M, Deniz K, et al. The effect of FoxP3 on tumour stage, treatment response, recurrence and survivalability in nasopharynx cancer patients. Clin Otolaryngol. 2019;44(3):349-55. https://doi.org/10.1111/coa.13311 PMid:30756505 DOI: https://doi.org/10.1111/coa.13311
Ooft M, Ipenburg JA, Sanders ME, Kranendonk M, Hofland I, Bree R, et al. Prognostic role of tumour-associated macrophages and regulatory T cells in EBV-positive and EBV- negative nasopharyngeal carcinoma. J Clin Pathol. 2017;71(3):267-274. https://doi.org/10.1136/jclinpath-2017-204664 PMid:28877959 DOI: https://doi.org/10.1136/jclinpath-2017-204664
Zhang YL, Li J, Mo HY, Qiu F, Zheng LM, Qian CN, et al. Different subsets of tumor infiltrating lymphocytes correlate with NPC progression in different ways. Mol Cancer. 2010;9:4. https://doi.org/10.1186/1476-4598-9-4 PMid:20064222 DOI: https://doi.org/10.1186/1476-4598-9-4
Wu Y, Borde M, Heissmeyer V. FOXP3 controls regulatory T cell function through cooperation with NFAT. Cell. 2006;126(2):375‐87. https://doi.org/10.1016/j.cell.2006.05.042 PMid:16873067 DOI: https://doi.org/10.1016/j.cell.2006.05.042
Cools N, Ponsaerts P, van Tendeloo VF, Berneman ZN. Regulatory T cells and human disease. Clin Dev Immunol. 2007;2007:89195. https://doi.org/10.1155/2007/89195 PMid:18317534 DOI: https://doi.org/10.1155/2007/89195
Shinto E, Hase K, Hashiguchi Y, Sekizawa A, Ueno H, Shikina A, et al. CD8+ and Foxp3+ tumor infiltrating T-cells before and after chemoradiotherapy for rectal cancer. Ann Surg Oncol. 2014;21 Suppl 3:S414-21. https://doi.org/10.1245/s10434-014-3584-y PMid:24566864 DOI: https://doi.org/10.1245/s10434-014-3584-y
Chan JK. Virus-associated neoplasm of the nasopharynx and sinonasal tract: diagnostic problems. Mod Pathol. 2017;30(S1):568-83. https://doi.org/10.1038/modpathol.2016.189 PMid:28060369 DOI: https://doi.org/10.1038/modpathol.2016.189
Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Dancet J, et al. New response evaluation criteria in solid tumours: Revised RECIST guideline (version 1.1). Eur J Cancer.2009;45(2):228-47. https://doi.org/10.1016/j.ejca.2008.10.026 PMid:19097774 DOI: https://doi.org/10.1016/j.ejca.2008.10.026
Li J, Mo HY, Xiong G, Zhang L, He J, Huang ZF, et al. Tumor microenvironment macrophage inhibitory factor directs the accumulation of interleukin-17-producing tumor infiltrating lymphocytes and predicts favorable survival in nasopharyngeal carcinoma patients. J Biol Chem. 2012;287(42):35484-95. https://doi.org/10.1074/jbc.M112.367532 PMid:22893706 DOI: https://doi.org/10.1074/jbc.M112.367532
Vasilescu F, Arsene D, Cionca F, Comanescu M, Enache V, Iosif C, et al. FoxP3 and IL17 expression in tumor infiltrating lymphocytes (TIL) and tumor cells-correlated or independent factors? Rom J Morphol Embryol. 2013:54(1):43-39. PMid:23529308
Pereira LM, Gomes ST, Ishak R, Callinoto AC. Regulatory T cell and forkhead box protein 3 as modulators of immune homeostasis. Front Immunol. 2017;8:605. https://doi.org/10.3389/fimmu.2017.00605 PMid:28603524 DOI: https://doi.org/10.3389/fimmu.2017.00605
Lee RG. Phenotypic and functional properties of tumor-infiltrating regulatory T cells. Mediators Inflamm. 2017;2017:5458178. https://doi.org/10.1155/2017/5458178. PMid:29463952 DOI: https://doi.org/10.1155/2017/5458178
Abbas AK, Lichtman AH, Pillai S. Cellular and Molecular Immunology. 9th ed. Philadelphia, PA: Saunders Elsevier; 2018.
Li C, Jiang P, Wei S, Xu X, Wang J. Regulatory T cells in tumor microenvironment: New mechanisms, potential therapeutic strategies and future prospects. Mol Cancer. 2020;19(1):116. https://doi.org/10.1186/s12943-020-01234-1 PMid:32680511 DOI: https://doi.org/10.1186/s12943-020-01234-1
Xu L, Wang C, Wen Z, Zhou Y, Liu Z, Lian Y, et al. CpG oligodeoxynucleotides enhance the efficacy of adoptive cell transfer using tumor infiltrating lymphocytes by modifying the Th1 polarization and local infiltration of Th17 cells. Clin Dev Immunol. 2010;2010:410893. https://doi.org/10.1155/2010/410893 PMid:2098127 DOI: https://doi.org/10.1155/2010/410893
Lau K, Cheng S, Lo K. Increase in circulating Foxp3+ CD4+ CD25 high regulatory T cells in nasopharyngeal carcinoma patients. Br J Cancer. 2007;96(4):617‐22. https://doi.org/10.1038/sj.bjc.6603580 PMid:17262084 DOI: https://doi.org/10.1038/sj.bjc.6603580
Yoshioka T, Miyamoto M, Cho Y, Ishikawa K, Tsuchikawa T, Kadoya M, et al. Infiltrating regulatory T cell numbers is not a factor to predict patient’s survival in oesophageal squamous cell carcinoma. Br J Cancer. 2008;98(7):1258‐63. https://doi.org/10.1038/sj.bjc.6604294 PMid:18349839 DOI: https://doi.org/10.1038/sj.bjc.6604294
Weller P, Bankfalvi A, Gu X, Dominas N, Lehnerdt GF, Zeidler R, et al. The role of tumour FoxP3 as prognostic marker in different subtypes of head and neck cancer. Eur J Cancer. 2014;50(7):1291‐300. https://doi.org/10.1016/j.ejca.2014.02.016 PMid:24630394 DOI: https://doi.org/10.1016/j.ejca.2014.02.016
Sun W, Li WJ, Wu CY, Zhong H, Wen WP. CD45RA‐Foxp3 high but not CD45RA+ Foxp3 low suppressive T regulatory cells increased in the peripheral circulation of patients with head and neck squamous cell carcinoma and correlated with tumor progression. J Clin Cancer Res. 2014;33(1):35. https://doi.org/10.1186/1756-9966-33-35 PMid:24761979 DOI: https://doi.org/10.1186/1756-9966-33-35
Almangush A, Ruuskanen M, Hagstrom J, Hirvikoski P, Tommola S, Kosma V, et al. Tumor infiltrating lymphocytes associate with outcome in nonendemic nasopharyngeal carcinoma: A multicenter study. Hum Pathol. 2018;81:211-9. https://doi.org/10.1016/j.humpath.2018.07.009 PMid:30030117 DOI: https://doi.org/10.1016/j.humpath.2018.07.009
James FR, Jiminiz M, Alsop J. Association between tumour infiltrating lymphocytes, hystotype and clinical outcome in epithelial ovarian cancer. BMC Cancer. 2017;17(1):657. https://doi.org/10.1186/s12885-017-3585-x PMid:28931370 DOI: https://doi.org/10.1186/s12885-017-3585-x
Hendy S, Salgado R, Gevaert T. Assessing tumor-infiltrating lymphocytes in solid tumors: A practical review for pathologists and proposal for a standardized method from the international immuno-oncology biomarkers working group: Part 2: TILs in melanoma, gastrointestinal tract carcinoma, non-small cell lung carcinoma and mesothelioma, endometrial and ovarian carcinomas, squamous cell carcinoma of the head and neck, genitourinary carcinomas, and primary brain tumors. Adv Anat Pathol. 2017;24(6):311-35. https://doi.org/10.1097/PAP.0000000000000161 PMid:28777143 DOI: https://doi.org/10.1097/PAP.0000000000000161
Wang Y, Chen YP, Zhang Y, Jiang W, Liu N, Yun JP, Sun Y, et al. Prognostic significance of tumor-infiltrating lymphocytes in nondisseminated nasopharyngeal carcinoma: A large-scale cohort study. Int J Cancer. 2018;142(12):2558-66. https://doi.org/10.1002/ijc.31279 PMid:29377121 DOI: https://doi.org/10.1002/ijc.31279
Tang T, Xu X, Guo S, Zhang C, Tang Y, Tian Y, et al. An increased abundance of tumor-infiltrating regulatory T cells is correlated with the progression and prognosis of pancreatic ductal adenocarcinoma. PLoS One. 2014:9(3):e91551. https://doi.org/10.1371/journal.pone.0091551 PMid:24637664 DOI: https://doi.org/10.1371/journal.pone.0091551
Gooden MH, Bock GH, Leffers N, Daemen T, Nijman HW. The prognostic influence of tumour infiltrating lymphocytes in cancer: A systematic review with meta-analysis. Br J Cancer. 2011;105(1):93-103. https://doi.org/10.1038/bjc.2011.189 PMid:21629244 DOI: https://doi.org/10.1038/bjc.2011.189
Feng M. Tumor volume is an independent prognostic indicator of local control in nasopharyngeal carcinoma patients treated with intensity-modulated radiotherapy. Radiat Oncol. 2013;8:208. https://doi.org/10.1186/1748-717X-8-208 PMid:24007375 DOI: https://doi.org/10.1186/1748-717X-8-208
Luo, Si M, Jiang G, Liu, Xinzi B. Immune infiltration in nasopharyngeal carcinoma based on gene expression. Medicine (Baltimore). 2019;98(39):e17311. https://doi.org/10.1097/MD.0000000000017311 PMid:31574860 DOI: https://doi.org/10.1097/MD.0000000000017311
Downloads
Published
How to Cite
License
Copyright (c) 2021 Lisnawati Lisnawati, Yayi Dwina Billianti, Amelia Fossetta Manatar (Author)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
http://creativecommons.org/licenses/by-nc/4.0