Potential Development of Digital Environmental Surveillance System in Dengue Control: A Qualitative Study

Authors

  • Sang Purnama Doctoral Study Program, Faculty of Public Health, University of Indonesia, Jakarta, Indonesia
  • Dewi Susanna Department of Environmental Health
  • Umar Fachmi Achmadi Department of Environmental Health, Faculty of Public Health, University of Indonesia, Jakarta, Indonesia
  • Tri Krianto Department of Education and Behavioral Science, Faculty of Public Health, University of Indonesia, Jakarta, Indonesia
  • Tris Eryando Department of Biostatistics, Faculty of Public Health, University of Indonesia, Jakarta, Indonesia

DOI:

https://doi.org/10.3889/oamjms.2021.7653

Keywords:

Development, Technology, Surveillance, Environment, Dengue

Abstract

Background: The development of digital environmental technology can be conducted to implement reports, surveillance, and manage dengue control. Therefore, this study aims to determine the barriers to the use of paper-based and the potential development of digital environmental technology in dengue control.

 

Methods

In-depth qualitative interviews were conducted using 14 key informants and four focus group discussions (FGD) from May-August 2021 in Denpasar City, Bali. The interviews were consistent with the flow of the epidemiological and entomological surveillance system, the obstacles to the dengue control program, the potential for the application of digital technology, and the challenges in the application of digital surveillance technology. Furthermore, open-ended questions and content analysis by qualitative study procedures were adopted. The results were transcribed verbatim and triangulation of sources was conducted for data validation.

 

Results

The reporting system that used paper-based was not optimally implemented due to repetition of reporting, speed of information, data bias, performance measurement as well as case surveillance and reporting system constraints. An integrated digital environmental surveillance system (SILIRA) was also developed for dengue control. In the current Covid-19 pandemic, the need for digital applications is high due to the policy of not accepting guests and keeping a distance. Epidemiological surveillance for case data collection, entomological surveillance for larva density, case reporting, and educational videos are the required data in the application.

 

Conclusion

The development of an integrated application for an environmental monitoring system can be created for the continuous reporting of case information and larval density for dengue hemorrhagic fever control.

Keywords: digital, surveillance, environment, dengue

 

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL, et al. The global distribution and burden of dengue. Nature. 2013;496(7446):504-7. https://doi.org/10.1038/nature12060 PMid:23563266 DOI: https://doi.org/10.1038/nature12060

Karyanti MR, Uiterwaal CS, Kusriastuti R, Hadinegoro SR, Rovers MM, Heesterbeek H, et al. The changing incidence of dengue haemorrhagic fever in Indonesia: A 45-year registry-based analysis. BMC Infect Dis. 2014;14(1):412. https://doi.org/10.1186/1471-2334-14-412 PMid:25064368 DOI: https://doi.org/10.1186/1471-2334-14-412

Ratnasari A, Jabal AR, Rahma N, Rahmi SN, Karmila M, Wahid I. The ecology of Aedes aegypti and Aedes albopictus larvae habitat in coastal areas of South Sulawesi, Indonesia. Biodiversitas. 2020;21(10):4648-54. DOI: https://doi.org/10.13057/biodiv/d211025

Ryan SJ, Carlson CJ, Mordecai EA, Johnson LR. Global expansion and redistribution of Aedes-Borne virus transmission risk with climate change. PLoS Negl Trop Dis. 2018;13(3):e0007213. https://doi.org/10.1371/journal.pntd.0007213 PMid:30921321 DOI: https://doi.org/10.1371/journal.pntd.0007213

Made Susila Utama I, Lukman N, Sukmawati DD, Alisjahbana B, Alam A, Murniati D, et al. Dengue viral infection in Indonesia: Epidemiology, diagnostic challenges, and mutations from an observational cohort study. PLoS Negl Trop Dis. 2019;13(10):e0007785. https://doi.org/10.1371/journal.pntd.0007785 PMid:31634352 DOI: https://doi.org/10.1371/journal.pntd.0007785

Masyeni S, Yohan B, Somia IK, Myint KSA, Sasmono RT. Dengue infection in international travellers visiting Bali, Indonesia. J Travel Med. 2018;25(1):tay061. https://doi.org/10.1093/jtm/tay061 DOI: https://doi.org/10.1093/jtm/tay061

Cromwell EA, Stoddard ST, Barker CM, van Rie A, Messer WB, Meshnick SR, et al. The relationship between entomological indicators of Aedes aegypti abundance and dengue virus infection. PLoS Negl Trop Dis. 2017;11(3):e0005429. https://doi.org/10.1371/journal.pntd.0005429 PMid:28333938 DOI: https://doi.org/10.1371/journal.pntd.0005429

Madzlan F, Che N, Say C, Zakaria N. Breeding characteristics of Aedes mosquitoes in dengue risk area. Proc Soc Behav Sci. 2016;234:164-72. DOI: https://doi.org/10.1016/j.sbspro.2016.10.231

Baak-Baak CM, Cigarroa-Toledo N, Pech-May A, Cruz-Escalona GA, Cetina-Trejo RC, Tzuc-Dzul JC, et al. Entomological and virological surveillance for dengue virus in churches in merida, Mexico. Rev Inst Med Trop Sao Paulo. 2019;61:e9. PMid:30785563 DOI: https://doi.org/10.1590/s1678-9946201961009

Racloz V, Ramsey R, Tong S, Hu W. Surveillance of dengue fever virus: A review of epidemiological models and early warning systems. PLoS Negl Trop Dis. 2012;6(5):e1648. https://doi.org/10.1371/journal.pntd.0001648 PMid:22629476 DOI: https://doi.org/10.1371/journal.pntd.0001648

Buhler C, Winkler V, Runge-Ranzinger S, Boyce R, Horstick O. Environmental methods for dengue vector control-a systematic review and meta-analysis. PLoS Negl Trop Dis. 2019;13(7):e0007420. https://doi.org/10.1371/journal.pntd.0007420 PMid:31295250 DOI: https://doi.org/10.1371/journal.pntd.0007420

Siregar FA, Makmur T, Huda N. Key breeding place for dengue vectors and the impact of larvae density on dengue transmission in North Sumatera province, Indonesia. Asian J Epidemiol. 2017;10(1):1-9. DOI: https://doi.org/10.3923/aje.2017.1.9

Dom NC, Ahmad AH, Ismail R. Habitat characterization of Aedes sp. breeding in urban hotspot area. Proc Soc Behav Sci. 2013;85:100-9. DOI: https://doi.org/10.1016/j.sbspro.2013.08.342

Getachew D, Tekie H, Gebre-Michael T, Balkew M, Mesfin A. Breeding sites of Aedes aegypti: Potential dengue vectors in Dire Dawa, East Ethiopia. Interdiscip Perspect Infect Dis. 2015;2015:706276. https://doi.org/10.1155/2015/706276 PMid:26435712 DOI: https://doi.org/10.1155/2015/706276

Jones NR, Qureshi ZU, Temple RJ, Larwood JP, Greenhalgh T, Bourouiba L. Two metres or one: What is the evidence for physical distancing in COVID-19? BMJ. 2020;370:m3223. https://doi.org/10.1136/bmj.m3223 PMid:32843355 DOI: https://doi.org/10.1136/bmj.m3223

Pratomo H. From social distancing to physical distancing: A challenge forevaluating public health intervention against COVID-19. Kesmas. 2020;15(2):60-3. DOI: https://doi.org/10.21109/kesmas.v15i2.4010

Yin MS, Bicout DJ, Haddawy P, Schöning J, Laosiritaworn Y, Sa-Angchai P. Added-value of mosquito vector breeding sites from street view images in the risk mapping of dengue incidence in Thailand. PLoS Negl Trop Dis. 2021;15(3):e0009122. https://doi.org/10.1371/journal.pntd.0009122 PMid:33684130 DOI: https://doi.org/10.1371/journal.pntd.0009122

Hussain-Alkhateeb L, Kroeger A, Olliaro P, Rocklöv J, Sewe MO, Tejeda G, et al. Early warning and response system (EWARS) for dengue outbreaks: Recent advancements towards widespread applications in critical settings. PLoS One. 2018;13(5):e0196811. https://doi.org/10.1371/journal.pone.0196811 PMid:29727447 DOI: https://doi.org/10.1371/journal.pone.0196811

Babu AN, Niehaus E, Shah S, Unnithan C, Ramkumar PS, Shah J, et al. Smartphone geospatial apps for dengue control, prevention, prediction, and education: MOSapp, DISapp, and the mosquito perception index (MPI). Environ Monit Assess 2019;191 Suppl 2:393. https://doi.org/10.1007/s10661-019-7425-0 PMid:31254076 DOI: https://doi.org/10.1007/s10661-019-7425-0

Carrillo MA, Kroeger A, Sanchez RC, Monsalve SD, Ranzinger SR. The use of mobile phones for the prevention and control of arboviral diseases: A scoping review. BMC Public Health. 2020;21(1):110. https://doi.org/10.1186/s12889-020-10126-4 PMid:33422034 DOI: https://doi.org/10.1186/s12889-020-10126-4

Lwin MO, Sheldenkar A, Panchapakesan C, Ng JS, Lau J, Jayasundar K, et al. Epihack Sri Lanka: Development of a mobile surveillance tool for dengue fever. BMC Med Inform Decis Mak. 2019;19(1):111. https://doi.org/10.1186/s12911-019-0829-5 PMid:31196073 DOI: https://doi.org/10.1186/s12911-019-0829-5

Lozano-Fuentes S, Wedyan F, Hernandez-Garcia E, Sadhu D, Ghosh S, Bieman JM, et al. Cell phone-based system (Chaak) for surveillance of immatures of dengue virus mosquito vectors. J Med Entomol. 2013;50(4):879-89. https://doi.org/10.1603/me13008 PMid:23926788

Wikipedia, Denpasar; 2021. Available from: https://www.en.wikipedia.org/wiki/denpasar. [Last accessed on 2021 Aug 14.

Braun V, Clarke V. Using thematic analysis in psychology. Qual Res Psychol. 2006;3(2):77-101. DOI: https://doi.org/10.1191/1478088706qp063oa

Elo S, Kääriäinen M, Kanste O, Pölkki T, Utriainen K,Kyngäs H. Qualitative content analysis. SAGE Open. 2014;4(1):1-10. DOI: https://doi.org/10.1177/2158244014522633

Kemenkes. Dengue Report in Indonesia. Jakarta: Kemenkes; 2020.

Balingit JC, Carvajal TM, Saito-Obata M, Gamboa M, Nicolasora AD, Sy AK, et al. Surveillance of dengue virus in individual Aedes aegypti mosquitoes collected concurrently with suspected human cases in Tarlac city, Philippines. Parasit Vectors. 2020;13(1):594. https://doi.org/10.1186/s13071-020-04470-y PMid:33239063 DOI: https://doi.org/10.1186/s13071-020-04470-y

Kosoltanapiwat N, Tongshoob J, Singkhaimuk P, Nitatsukprasert C, Davidson SA, Ponlawat A. Entomological surveillance for zika and dengue virus in Aedes mosquitoes: Implications for vector control in Thailand. Pathogens. 2020;9(6):442. https://doi.org/10.3390/pathogens9060442 PMid:32512828 DOI: https://doi.org/10.3390/pathogens9060442

Wartel TA, Prayitno A, Hadinegoro SRS, Capeding MR, Thisyakorn U, Tran NH, et al. Three decades of dengue surveillance in five highly endemic South East Asian countries: A descriptive review. Asia Pac J Public Health. 2017;29(1):7-16. https://doi.org/10.1177/1010539516675701 PMid:28198645 DOI: https://doi.org/10.1177/1010539516675701

Beatty ME, Stone A, Fitzsimons DW, Hanna JN, Lam SK, Vong S, et al. Best practices in dengue surveillance: A report from the asia-pacific and americas dengue prevention boards. PLoS Negl Trop Dis. 2010;4(11):e890. https://doi.org/10.1371/journal.pntd.0000890 PMid:21103381 DOI: https://doi.org/10.1371/journal.pntd.0000890

Herbuela VR, Karita T, Francisco ME, Watanabe K. An integrated mhealth app for dengue reporting and mapping, health communication, and behavior modification: Development and assessment of mozzify. JMIR Form Res. 2020;4(1):e16424. https://doi.org/10.2196/16424 PMid:31913128 DOI: https://doi.org/10.2196/16424

Sulistyawati S, Nilsson M, Ekasari MP, Mulasari SA, Sukesi TW, Padmawati RS, et al. Untapped potential: A qualitative study of a hospital-based dengue surveillance system. Am J Trop Med Hyg. 2020;103(1):120-31. https://doi.org/10.4269/ajtmh.19-0719 PMid:32394883 DOI: https://doi.org/10.4269/ajtmh.19-0719

Syamsuddin M, Fakhruddin M, Sahetapy-Engel JT, Soewono E. Causality analysis of Google trends and dengue incidence in Bandung, Indonesia with linkage of digital data modeling: Longitudinal observational study. J Med Internet Res. 2020;22(7):e17633. https://doi.org/10.2196/17633 PMid:32706682 DOI: https://doi.org/10.2196/17633

Lozano-Fuentes S, Wedyan F, Hernandez-Garcia E, Sadhu D, Ghosh S, Bieman JM, et al. Cell phone-based system (chaak) for surveillance of immatures of dengue virus mosquito vectors. J Med Entomol. 2013;50(4):879-89. https://doi.org/10.1603/me13008 PMid:23926788 DOI: https://doi.org/10.1603/ME13008

Dammert AC, Galdo JC, Galdo V. Preventing dengue through mobile phones: Evidence from a field experiment in Peru. J Health Econ. 2014;35(1):147-61. https://doi.org/10.1016/j.jhealeco.2014.02.002 PMid:24681813 DOI: https://doi.org/10.1016/j.jhealeco.2014.02.002

Zainab N, Tariq A, Saima S. Research article development of web-based GIS alert system for informing environmental risk of dengue infections in major cities of Pakistan naureen. Geosfera Indones. 2021;6(1):77-95. DOI: https://doi.org/10.19184/geosi.v6i1.20792

Hernández-Ávila JE, Rodríguez MH, Santos-Luna R, Sánchez-Castañeda V, Román-Pérez S, Ríos-Salgado VH, et al. Nation-Wide, Web-Based, geographic information system for the integrated surveillance and control of dengue fever in Mexico. PLoS One. 2013;8(8):e70231. https://doi.org/10.1371/journal.pone.0070231 PMid:23936394 DOI: https://doi.org/10.1371/journal.pone.0070231

Hiremath P, Chakrabarty J, Sequira L. Video assisted education on knowledge and practices of house wives towards prevention of dengue fever at Gokak Taluk, Karnataka, India. Int J Health Promot Educ. 2020;58(5):259-67. DOI: https://doi.org/10.1080/14635240.2019.1685900

Tsheten T, Gray DJ, Clements ACA, Wangdi K. Epidemiology and challenges of dengue surveillance in the WHO South-East Asia Region. Trans R Soc Trop Med Hyg. 2021;115(6):583-99. https://doi.org/10.1093/trstmh/traa158 PMid:33410916 DOI: https://doi.org/10.1093/trstmh/traa158

Nguyen-Tien T, Probandari A, Ahmad RA. Barriers to engaging communities in a dengue vector control program: An implementation research in an urban area in Hanoi city, Vietnam. Am J Trop Med Hyg. 2019;100(4):964-73. https://doi.org/10.4269/ajtmh.18-0411 PMid:30652660 DOI: https://doi.org/10.4269/ajtmh.18-0411

Downloads

Published

2021-12-03

How to Cite

1.
Purnama S, Susanna D, Achmadi UF, Krianto T, Eryando T. Potential Development of Digital Environmental Surveillance System in Dengue Control: A Qualitative Study. Open Access Maced J Med Sci [Internet]. 2021 Dec. 3 [cited 2024 Apr. 23];9(E):1443-5. Available from: https://oamjms.eu/index.php/mjms/article/view/7653

Issue

Section

Public Health Epidemiology

Categories