Deletion of the RNLS Gene using CRISPR/Cas9 as Pancreatic Cell β Protection against Autoimmune and ER Stress for Type 1 Diabetes Mellitus
DOI:
https://doi.org/10.3889/oamjms.2021.7658Keywords:
Type 1 diabetes mellitus, ER stress, CRISPR-Cas9, Genome editing, RNLS, RNLS deletionAbstract
BACKGROUND: Type 1 diabetes mellitus (T1DM) is a chronic disease in children which is usually caused by autoimmunity that damages pancreatic a and b cells which have functions as blood glucose regulators. Some studies stated that Renalase (RNLS) gene deletion will protect these b cells from autoimmune reactions and Endoplasmic Reticulum (ER) stress. RNLS deletion by genome editing Clustered Regular interspersed Short Palindromic Repeats-CRISPR-related (CRISPR/Cas9) is believed to have the potential to be a therapy for T1DM Patients.
AIM: This research was conducted to know the potential of RNLS deletion using the CRISPR/Cas9 as an effective therapy and whether it has a permanent effect on T1DM patients.
METHODS: The method applied in this research summarized articles by analyzing the titles and abstracts of various predetermined keywords. In this case, the author chose a full-text article published within the past 10 years by prioritizing searches in the last 5 years through PubMed, Google Scholar, Science Direct, Cochrane, American Diabetes Association, and official guidelines from IDAI.
RESULTS: RNLS deletion using CRISPR/Cas9 in mice weakened the response of polyclonal -cell-reactive CD8+ T cells and disrupted the immune recognition to cells so that autoimmune killing did occur. In addition, such deletion prevents RNLS ER stress by increasing the threshold, triggering the unfolded protein response so that ER stress is difficult to occur. RNLS mutations in b cells also increase b cell survivability to oxidative stress.
CONCLUSION: b cells RNLS deletion by genome editing CRISPR/Cas9 is effective in protecting b cells from autoimmune reactions and RE stress. However, further research is needed to determine the side effects and safety of its use.Downloads
Metrics
Plum Analytics Artifact Widget Block
References
UKK Endokrinologi Ikatan Dokter Anak Indonesia. In: Yati NP, Tridjaja B, editors. Diagnosis dan Tata Laksana Diabetes Mellitus Tipe-1 Pada Anak dan Remaja. Jakarta: Ikatan Dokter Anak Indonesia; 2017.
Moini J. In: Moini JB, editor. Type 1 Diabetes. Ch. 6. Amsterdam, Netherlands: Elsevier; 2019. p. 75-90. DOI: https://doi.org/10.1016/B978-0-12-816864-6.00006-7
Ispriantari A, Priasmoro DP. Self-acceptance in teenagers with Type 1 diabetes in Malang. Dunia Keperawatan J Keperawatan dan Kesehat. 2017;5(2):115-20. DOI: https://doi.org/10.20527/dk.v5i2.4116
Simatupang R. The Influence of Health Education Through Media Leaflets On Dm Diet On Patient Knowledge Dm At Pandan Hospital central Tapanuli Regency in 2017. Ilm Kohesi. 2017;1(2):163–74.
Lindbladh I, Svärd AA, Lernmark Å. Autoimmune (Type 1) diabetes. In: The Autoimmune Diseases. Amsterdam, Netherlands: Elsevier; 2019. p. 769-87. DOI: https://doi.org/10.1016/B978-0-12-812102-3.00041-5
Toniolo A, Cassani G, Puggioni A, Rossi A, Colombo A, Onodera T, et al. The diabetes pandemic and associated infections: Suggestions for clinical microbiology. Rev Med Microbiol 2019;30:1-17. DOI: https://doi.org/10.1097/MRM.0000000000000155
Pulungan AB,Annisa D, Type 1 Diabetes Mellitus in Children: Situation in Indonesia and Management. Sari Pediatr.2019;20(6):392. DOI: https://doi.org/10.14238/sp20.6.2019.392-400
Afdal A, Rini EA. Neglected-noncompliant Type 1 diabetes mellitus with complications. J Kesehat Andalas. 2012;1(2):61. https://doi.org/10.25077/jka.v1i2.61 DOI: https://doi.org/10.25077/jka.v1i2.61
Warshauer JT, Bluestone JA, Anderson MS. New frontiers in the treatment of Type 1 diabetes. Cell Metab. 2020;31(1):46-61. https://doi.org/10.1016/j.cmet.2019.11.017 PMid:31839487 DOI: https://doi.org/10.1016/j.cmet.2019.11.017
Firdausi AZ, Sriyono S, Asmoro CP. Hubungan Dukungan Keluarga dengan Kepatuhan Melakukan Latihan Fisik dan Terapi Insulin Pada Pasien DIabetes Melitus Tipe 1 di Poliklinik Penyakit Dalam RSUD Dr. Abdoer Rahem Situbondo. Crit Med Surg Nurs J. 2016;4(2):12396.
DiMeglio LA, Evans-Molina C, Oram RA. Type 1 diabetes. Lancet. 2018;391(10138):2449-62. https://doi.org/10.1016/S0140-6736(18)31320-5 PMid:29916386 DOI: https://doi.org/10.1016/S0140-6736(18)31320-5
Reliance R. Kepatuhan Pasien Diabetes Melitus Dalam Menjalani Terapi Insulin di RSUPH. Adam Malik Medan; 2018.
Kroger CJ, Clark M, Ke Q, Tisch RM. Therapies to suppress β _cell autoimmunity in Type 1 diabetes. Front Immunol. 2018;9:1891. https://doi.org/10.3389/fimmu.2018.01891 PMid:30166987 DOI: https://doi.org/10.3389/fimmu.2018.01891
Haller MJ, Gitelman SE, Gottlieb PA, Michels AW, Perry DJ, Schultz AR, et al. Antithymocyte globulin plus G-CSF combination therapy leads to sustained immunomodulatory and metabolic effects in a subset of responders with established Type 1 diabetes. Diabetes. 2016;65(12):3765-75. https://doi.org/10.2337/db16-0823 PMid:27669730 DOI: https://doi.org/10.2337/db16-0823
Malmegrim KC, de Azevedo JT, Arruda LC, Abreu JR, Couri CE, de Oliveira GL, et al. Immunological balance is associated with clinical outcome after autologous hematopoietic stem cell transplantation in type 1 diabetes. Front Immunol. 2017;8:167. http://doi.org/10.3389/fimmu.2017.00167 PMid:28275376 DOI: https://doi.org/10.3389/fimmu.2017.00167
Jacobsen LM, Newby BN, Perry DJ, Posgai AL, Haller MJ, Brusko TM. Immune mechanisms and pathways targeted in Type 1 diabetes. Curr Diab Rep. 2018;18(10):90. https://doi.org/10.1007/s11892-018-1066-5 PMid:30168021 DOI: https://doi.org/10.1007/s11892-018-1066-5
Smail HO. The role of gene therapy in the treatments of Type 1 diabetes mellitus: A review. Biol Med Nat Prod Chem. 2020;9(2):57-64. DOI: https://doi.org/10.14421/biomedich.2020.92.57-64
Bannikov AV, Lavrov AV. CRISPR/CAS9, the king of genome editing tools. Mol Biol (Mosk). 2017;51(4):582-94. https://doi.org/10.7868/S0026898417040036 PMid:28900076 DOI: https://doi.org/10.1134/S0026893317040033
Widyastuti DA. Gene Therapy: From Biotechnology to Health. Al-Kauniyah J Biol.2017;10(1):59-72. DOI: https://doi.org/10.15408/kauniyah.v10i1.4864
Clark AL, Urano F. Endoplasmic reticulum stress in beta cells and autoimmune diabetes. Curr Opin Immunol. 2016;43:60-6. https://doi.org/10.1016/j.coi.2016.09.006 PMid:27718448 DOI: https://doi.org/10.1016/j.coi.2016.09.006
Marré ML, Profozich JL, Coneybeer JT, Geng X, Bertera S, Ford MJ, et al. Inherent ER stress in pancreatic islet β _cells causes self-recognition by autoreactive T cells in Type 1 diabetes. J Autoimmun. 2016;72:33-46. https://doi.org/10.1016/j.jaut.2016.04.009 Mid:27173406 DOI: https://doi.org/10.1016/j.jaut.2016.04.009
Almanza A, Carlesso A, Chintha C, Creedican S, Doultsinos D, Leuzzi B, et al. Endoplasmic reticulum stress signalling from basic mechanisms to clinical applications. FEBS J. 2019;286(2):241-78. https://doi.org/10.1111/febs.14608 PMid:30027602 DOI: https://doi.org/10.1111/febs.14608
Cao ZH, Wu Z, Hu C, Zhang M, Wang WZ, Hu XB. Endoplasmic reticulum stress and destruction of pancreatic β _cells in Type 1 diabetes. Chin Med J 2020;133:68-73. https://doi.org/10.1097/CM9.0000000000000583 PMid:31923106 DOI: https://doi.org/10.1097/CM9.0000000000000583
Di Conza G, Ho PC. ER stress responses: An emerging modulator for innate immunity. Cells. 2020;9(3):695. https://doi.org/10.3390/cells9030695 Mid:32178254 DOI: https://doi.org/10.3390/cells9030695
Fatani TH. EIF2AK3 novel mutation in a child with early-onset diabetes mellitus, a case report. BMC Pediatr. 2019;19(1):85. https://doi.org/10.1186/s12887-019-1432-8 PMid:30922274 DOI: https://doi.org/10.1186/s12887-019-1432-8
Raffel LJ, Goodarzi MO. Diabetes mellitus. Ref Modul Biomed Sci. 2014;4. DOI: https://doi.org/10.1016/B978-0-12-801238-3.05558-6
Cai EP, Ishikawa Y, Zhang W, Leite NC, Li J, Hou S, et al. Genome-scale in vivo CRISPR screen identifies RNLS as a target for beta cell protection in Type 1 diabetes. Nat Metab. 2020;2(9):934-45. https://doi.org/10.1038/s42255-020-0254-1 PMid:32719542 DOI: https://doi.org/10.1038/s42255-020-0254-1
Li X, Huang R, Xie Z, Lin M, Liang Z, Yang Y, et al. Renalase, a new secretory enzyme: Its role in hypertensive-ischemic cardiovascular diseases. Med Sci Monit. 2014;20:688-92. https://doi.org/10.12659/MSM.890261 PMid:24762661 DOI: https://doi.org/10.12659/MSM.890261
Desir GV, Peixoto AJ. Renalase in hypertension and kidney disease. Nephrol Dial Transplant. 2014; 29(1):22-8. https://doi.org/10.1093/ndt/gft083 PMid:24137013 DOI: https://doi.org/10.1093/ndt/gft083
Lv YB, Wang Y, Ma WG, Yan DY, Zheng WL, Chu C, et al. Association of renalase SNPs rs2296545 and rs2576178 with the risk of hypertension: A meta-analysis. PLoS One. 2016;11(7):e0158880. https://doi.org/10.1371/journal.pone.0158880 PMid:27434211 DOI: https://doi.org/10.1371/journal.pone.0158880
Kolodecik TR, Reed AM, Date K, Shugrue CA, Patel V, Chung SL, et al. The serum protein renalase reduces injury in experimental Pancreatitis. J Biol Chem. 2017;292(51):21047-59. https://doi.org/10.1074/jbc.M117.789776 PMid:29042438 DOI: https://doi.org/10.1074/jbc.M117.789776
Zhang T, Gu J, Guo J, Chen K, Li H, Wang J. Renalase attenuates mouse fatty liver ischemia/reperfusion injury through mitigating oxidative stress and mitochondrial damage via activating SIRT1. Oxid Med Cell Longev. 2019;2019:7534285. https://doi.org/10.1155/2019/7534285 DOI: https://doi.org/10.1155/2019/7534285
Fava C, Montagnana M, Danese E, Sjögren M, Almgren P, Engström G, et al. The Renalase Asp37Glu polymorphism is not associated with hypertension and cardiovascular events in an urban-based prospective cohort: The Malmö Diet and cancer study. BMC Med Genet. 2012;13:57. http://doi.org/10.1186/1471-2350-13-57 PMid:22812913 DOI: https://doi.org/10.1186/1471-2350-13-57
Ormond KE, Mortlock DP, Scholes DT, Bombard Y, Brody LC, Faucett WA, et al. Human germline genome editing. Am J Hum Genet. 2017;101(2):167-76. http://doi.org/10.1016/j.ajhg.2017.06.012 PMid:28777929 DOI: https://doi.org/10.1016/j.ajhg.2017.06.012
Lu J, Liu J, Guo Y, Zhang Y, Xu Y, Wang X. CRISPR-Cas9: A method for establishing rat models of drug metabolism and pharmacokinetics. Acta Pharm Sin B. 2021;11(10):2973-82. http://doi.org/10.1016/j.apsb.2021.01.007 PMid:34745851 DOI: https://doi.org/10.1016/j.apsb.2021.01.007
Isa NM, Zulkifli NA, Man S. Islamic perspectives on CRISPR/Cas9-mediated human germline gene editing: A preliminary discussion. Sci Eng Ethics. 2020;26(1):309-23. http://doi.org/10.1007/s11948-019-00098-z PMid:30830592 DOI: https://doi.org/10.1007/s11948-019-00098-z
Hidayah N. Cluster Regulary Interspaced Short Palindromic Repeat Association 9 (CRISPR/Cas9) Teknologi Terbaru Editing Gen Human Pluripotent Stem Cells (Hpscs) Sebagai Terapi Penyakit Diabetes Mellitus Tipe 1. Vol. 8. Khazanah: Jurnal Mahasiswa; 2020.
Downloads
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2021 Aufa Baraja, Fadhilla Rachmawati Sunarto , Arga Setyo Adji, Fitri Handajani , Firman Suryadi Rahman (Author)

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
http://creativecommons.org/licenses/by-nc/4.0