The Role of Adipokines in Cardiovascular Pathology

Authors

  • Valery Podzolkov Department of Faculty Therapy, No. 2 I.M. Sechenov First Moscow State Medical University, Sechenov University, Moscow, Russian Federation
  • Anna Pokrovskaya Department of Faculty Therapy, No. 2 I.M. Sechenov First Moscow State Medical University, Sechenov University, Moscow, Russian Federation https://orcid.org/0000-0002-8875-9032
  • Ulyana Bazhanova University Clinical Hospital No. 4, I.M. Sechenov First Moscow State Medical University, Sechenov University, Moscow, Russian Federation
  • Tatyana Vargina Department of Faculty Therapy, No. 2 I.M. Sechenov First Moscow State Medical University, Sechenov University, Moscow, Russian Federation https://orcid.org/0000-0003-3076-4231
  • Svetlana Anatolievna Knyazeva Department of Medical and Social Expertise
  • Daria Vanina Department of Faculty Therapy, No. 2 I.M. Sechenov First Moscow State Medical University, Sechenov University, Moscow, Russian Federation https://orcid.org/0000-0003-1959-370X

DOI:

https://doi.org/10.3889/oamjms.2021.7661

Keywords:

Obesity, Type 2 diabetes mellitus, Cardiovascular system, Arterial hypertension, Coronary artery disease, Adipokines, Apelin, Adiponectin, Resistin, Visfatin, Omentin

Abstract

The recent decades saw a steady growth of obesity incidence worldwide. Obesity is an independent risk factor for cardiovascular diseases (CVDs) and type 2 diabetes mellitus and is also associated with a shorter life expectancy. Not only hemodynamic but also hormone metabolic processes, arising from excessive accumulation of adipose tissue in human body, underlie the development of CVDs. Adipose tissue has now been proved to be a hormone-active substrate. Studies of the influence of adipokines will bring us closer to understanding cardiovascular pathogenesis and help personalize prophylactic strategies.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

Gritsenko ОV, Chumakova GА, Shevlyakov IV, Trubina ЕV. The mechanisms of heart failure development in obesity. Russ J Cardiol. 2018;23(5):81-6. http://doi.org/10.15829/1560-4071-2018-5-81-86 PMid:25434909 DOI: https://doi.org/10.15829/1560-4071-2018-5-81-86

Chumakova GA, Veselovskaya NG, Kozarenko AA, Vorobyeva YV. Heart morphology, structure, and function in obesity. Russ J Cardiol. 2012;4(96):93-9. http://doi.org/10.1007/s13679-016-0235-6 PMid:27744513 DOI: https://doi.org/10.1007/s13679-016-0235-6

Alpert MA, Karthikeyan K, Abdullah O, Ghadban R. Obesity and cardiac remodeling in adults: Mechanisms and clinical implications. Prog Cardiovasc Dis. 2018;61:114-23. https://doi.org/10.1016/j.pcad.2018.07.012 PMid:29990533 DOI: https://doi.org/10.1016/j.pcad.2018.07.012

Drapkina OM, Korneeva ON, Palatkina LO. Adipokines and cardiovascular diseases: Impact on pathogenesis and therapeutic perspectives. Arterial Hyperten. 2011;17(3):203-8.

Horwich TB, Fonarow GC, Clark AL. Obesity and the obesity paradox in heart failure. Prog Cardiovasc Dis. 2018;61(2):151-6. https://doi.org/10.1016/j.pcad.2018.05.005 PMid:29852198 DOI: https://doi.org/10.1016/j.pcad.2018.05.005

Zieba DA, Biernat W, Barc J. Roles of leptin and resistin in metabolism, reproduction, and leptin resistance. Domestic Anim Endocrinol. 2020;73:106472. https://doi.org/10.1016/j.domaniend.2020.106472 PMid:32265081 DOI: https://doi.org/10.1016/j.domaniend.2020.106472

Rachwalik M, Hurkacz M, Sienkiewicz-Oleszkiewicz B, Jasiński M. Role of resistin in cardiovascular diseases: Implications for prevention and treatment. Adv Clin Exp Med. 2021;30(8):865-74. https://doi.org/10.17219/acem/135978 PMid:34286515 DOI: https://doi.org/10.17219/acem/135978

Landecho MF, Tuero C, Valentí V, Bilbao I, Higuera M, Frühbeck G. Relevance of leptin and other adipokines in obesityassociated cardiovascular risk. Nutrients. 2019;11(11):2664. https://doi.org/10.3390/nu11112664 PMid:31694146 DOI: https://doi.org/10.3390/nu11112664

Kovaleva ON, Ambrosova TN, Ascheulova TV, Getman EA. Adipokines: Biological, pathophysiological and metabolic effects. Vnutrennyaya Med 2009;3:18-26.

Zhang JZ, Gao Y, Zheng YY, Liu F, Yang YN, Li XM, et al. Increased serum resistin level is associated with coronary heart disease. Oncotarget 2017;8(30):50148-54. https://doi.org/10.18632/oncotarget.15707 PMid:28404934 DOI: https://doi.org/10.18632/oncotarget.15707

Khera AV, Qamar A, Murphy SA, Cannon CP, Sabatine MS, Rader DJ. On-statin resistin, leptin, and risk of recurrent coronary events after hospitalization for an acute coronary syndrome (from the pravastatin or atorvastatin evaluation and infection therapythrombolysis in myocardial infarction 22 study). Am J Cardiol. 2015;116(5):694-8. https://doi.org/10.1016/j.amjcard.2015.05.038 PMid:26119654 DOI: https://doi.org/10.1016/j.amjcard.2015.05.038

Verbovoy AF, Tsanava IA, Sharonova LA. Resistin: Biological and pathophysiological effects. Klin Med. 2017;95(4):322-7. http://doi.org/10.18821/0023-2149-2017-95-4-322-327 PMid:15526156 DOI: https://doi.org/10.18821/0023-2149-2017-95-4-322-327

Park HK, Kwak MK, Kim HJ, Ahima RS. Linking resistin, inflammation, and cardiometabolic diseases. Korean J Intern Med. 2017;32(2):239-47. https://doi.org/10.3904/kjim.2016.229 PMid:28192887 DOI: https://doi.org/10.3904/kjim.2016.229

Melone M, Wilsie L, Palyha O, Strack A, Rashid S. Discovery of a new role of human resistin in hepatocyte low-density lipoprotein receptor suppression mediated in part byproprotein convertase subtilisin/kexin type 9. J Am Coll Cardiol. 2012;59(19):1697-705. https://doi.org/10.1016/j.jacc.2011.11.064 PMid:22554600 DOI: https://doi.org/10.1016/j.jacc.2011.11.064

Badoer E, Kosari S, Stebbing MJ. Resistin, an adipokine with non-generalized actions on sympathetic nerve activity. Front Physiol. 2015;6:321. https://doi.org/10.3389/fphys.2015.00321 PMid:26617526 DOI: https://doi.org/10.3389/fphys.2015.00321

Smirnova EN, Shulkina SG. Dynamics of leptin, soluble leptin receptors, free leptin index and resistin in reducing body weight in patients with arterial hypertension associated with obesity. Arterial Hyperten. 2016;22(4):382-8. https://doi.org/10.18705/1607-419X-2016-22-4-382-388 DOI: https://doi.org/10.18705/1607-419X-2016-22-4-382-388

Fujiu K, Yuxiang L. Human resistin and cardiovascular disease. Int Heart J. 2020;61:421-3. https://doi.org/10.1536/ihj.20-221 DOI: https://doi.org/10.1536/ihj.20-221

Park HK, Ahima RS. Resistin in rodents and humans. Diabetes Metab J. 2013;37(6):404-14. https://doi.org/10.4093/dmj.2013.37.6.404 PMid:24404511 DOI: https://doi.org/10.4093/dmj.2013.37.6.404

Verbovoy AF, Pashentseva AV, Sharonova LA. Obesity and cardiovascular system. Klin Med. 2017;95(1):31-5. http://doi.org/10.18821/0023-2149-2017-95-1-31-35 DOI: https://doi.org/10.18821/0023-2149-2017-95-1-31-35

Kapłon-Cieślicka A, Tymińska A, Rosiak M, Ozierański K, Peller M, Eyileten C, et al. Resistin is a prognostic factor for death in type 2 diabetes. Diabetes Metab Res Rev. 2019;35(2):e3098. http://doi.org/10.1002/dmrr.3098 PMid:30447052 DOI: https://doi.org/10.1002/dmrr.3098

Mughal A, O’Rourke ST. Vascular effects of apelin: Mechanisms and therapeutic potential. Pharmacol Ther. 2018;190:139-47. http://doi.org/10.1016/j.pharmthera.2018.05.013 PMid:29807055 DOI: https://doi.org/10.1016/j.pharmthera.2018.05.013

Lee DK, Cheng R, Nguyen T, Fan T, Kariyawasam AP, Liu Y, et al. Characterization of apelin, the ligand for the APJ receptor. J Neurochem. 2000;74(1):34-41. http://doi.org/10.1046/j.1471-4159.2000.0740034.x PMid:10617103 DOI: https://doi.org/10.1046/j.1471-4159.2000.0740034.x

Jh F, Wm L, Xp W, Tan XY, Gao YH, Han CL, et al. Hemodynamic effect of apelin in a canine model of acute pulmonary thromboembolism. Peptides. 2010;31(9):1772-8. http://doi.org/10.1016/j.peptides.2010.06.004 PMid:20561551. DOI: https://doi.org/10.1016/j.peptides.2010.06.004

Yan J, Wang A, Cao J, Chen L. Apelin/APJ system: An emerging therapeutic target for respiratory diseases. Cell Mol Life Sci. 2020;77(15):2919-30. https://doi.org/10.1007/s00018-020-03461-7 PMid:32128601 DOI: https://doi.org/10.1007/s00018-020-03461-7

Heinonen I, Vuolteenaho O, Koskenvuo J, Arjamaa O, Nikinmaa M. Systemic hypoxia increases circulating concentration of apelin in humans. High Alt Med Biol. 2017;18(3):292-5. https://doi.org/10.1089/ham.2017.0017 PMid:28850251 DOI: https://doi.org/10.1089/ham.2017.0017

Guzelburc O, Demirtunc R, Altay S, Kemaloglu OT, Tayyareci G. Plasma apelin level in acute myocardial infarction and its relation with prognosis: A prospective study. JRSM Cardiovasc Dis. 2021;10:1-7. https://doi.org/10.1177/2048004020963970 PMid:33643639 DOI: https://doi.org/10.1177/2048004020963970

Tereshchenko IV, Kamenskikh YA, Suslina AA. Adiponectin in health and disease. Ter Arkh. 2016;12:126-32. https://doi.org/10.17116/terarkh20168812126-132 PMid:17391153 DOI: https://doi.org/10.17116/terarkh20168812126-132

Katsiki N, Mantzoros C, Mikhailidis DP. Adiponectin, lipids and atherosclerosis. Curr Opin Lipidol. 2017;28(4):347-54. https://doi.org/10.1097/MOL.0000000000000431 PMid:28463859 DOI: https://doi.org/10.1097/MOL.0000000000000431

Kosygina AV. Adipocytokines in scientific and clinical practice. Obes Metab 2011;1:32-9. DOI: https://doi.org/10.14341/2071-8713-5189

Liberale L, Carbone F, Bertolotto M, Bonaventura A, Vecchié A, Mach F, et al. Serum adiponectin levels predict acute coronary syndrome (ACS) in patients with severe carotid stenosis. Vasc Pharmacol. 2018;102:37-4. https://doi.org/10.1016/j.vph.2017.12.066 PMid:29305337 DOI: https://doi.org/10.1016/j.vph.2017.12.066

Chen J, Zhang W, Wu YQ, Chen H, Zhao JF. Correlations of acute myocardial infarction complicated by cerebral infarction with insulin resistance, adiponectin and HMGB1. Eur Rev Med Pharmacol Sci. 2019;23(10):4425-31. https://doi.org/10.26355/eurrev_201905_17951 PMid:31173318

Ai M, Otokozawa S, Asztalos BF, White CC, Cupples LA, Nakajima K, et al. Adiponectin: An independent risk factor for coronary heart disease in men in the Framingham offspring Study. Atherosclerosis. 2011;217(2):543-8. https://doi.org/10.1016/j.atherosclerosis.2011.05.035 PMid:21741045 DOI: https://doi.org/10.1016/j.atherosclerosis.2011.05.035

Ambroziak M, Kolanowska M, Bartoszewicz Z, Budaj A. Adiponectin gene variants and decreased adiponectin plasma levels are associated with the risk of myocardial infarction in young age. Gene. 2018;642:498-504. https://doi.org/10.1016/j.gene.2017.11.064 PMid:29196254 DOI: https://doi.org/10.1016/j.gene.2017.11.064

Liang S, Li H, Shen X, Liu R. Increased serum adiponectin predicts improved coronary flow and clinical outcomes in patients with ST-segment elevation myocardial infarction treated by primary percutaneous coronary intervention. J Clin Lab Anal. 2019;33(5):e22864. https://doi.org/10.1002/jcla.22864 PMid:30779470 DOI: https://doi.org/10.1002/jcla.22864

Boyarinova MA, Rotar OP, Konradi AO. Adipokines and cardiometabolic syndrome. Arter Hyperten. 2014;20(5):422-32. https://doi.org/10.18705/1607-419X-2014-20-5-422-432

Vavilova TP, Pleten’ AP, Mikheev RK. Biological role of adipokines and their association with morbid conditions. Prob Nutr. 2017;86(2):5-13. https://doi.org/10.24411/0042-8833-2017-00028 PMid:30645873

Berezin AE, Berezin AA, Lichtenauer M. Emerging role of adipocyte dysfunction in inducing heart failure among obese patients with prediabetes and known diabetes mellitus. Front Cardiovasc Med. 2020;7:583175. https://doi.org/10.3389/fcvm.2020.583175 PMid:33240938 DOI: https://doi.org/10.3389/fcvm.2020.583175

Pourafkari L, Tajlil A, Nader ND. Biomarkers in diagnosing and treatment of acute heart failure. Biomark Med. 2019;13(14):1235-49. https://doi.org/10.2217/bmm-2019-0134 PMid:31580155 DOI: https://doi.org/10.2217/bmm-2019-0134

Vallejo S, Romacho T, Angulo J, Villalobos LA, Cercas E, Leivas A, et al. Visfatin impairs endothelium-dependent relaxation in rat and human mesenteric microvessels through nicotinamide phosphoribosyltransferase activity. PLoS One. 2011;6(11):e27299. https://doi.org/10.1371/journal.pone.0027299 PMid:22073309 DOI: https://doi.org/10.1371/journal.pone.0027299

Spiroglou S, Kostopoulos C, Varakis J, Papadaki H. Adipokines in periaortic and epicardial adipose tissue: Differential expression and relation to atherosclerosis. J Atherosc Thromb. 2010;17(2):115-30. https://doi.org/10.5551/jat.1735 PMid:20145358 DOI: https://doi.org/10.5551/jat.1735

Boateng SY, Olfert IM, Chantler PD. Role of perivascular adipose tissue and exercise on arterial function with obesity. Exerc Sport Sci Rev. 2021;49(3):188-96. https://doi.org/10.1249/JES.0000000000000251 PMid:33831902 DOI: https://doi.org/10.1249/JES.0000000000000251

Dahl TB, Yndestad A, Skjelland M, Øie E, Dahl A, Michelsen A, et al. Increased expression of visfatin in macrophages of human unstable carotid and coronary atherosclerosis: Possible role in inflammation and plaque destabilization. Circulation. 2007;115(8):972-80. https://doi.org/10.1161/CIRCULATIONAHA.106.665893 PMid:17283255 DOI: https://doi.org/10.1161/CIRCULATIONAHA.106.665893

Yu F, Li J, Huang Q, Cai H. Increased peripheral blood visfatin concentrations may be a risk marker of coronary artery disease: A meta-analysis of observational studies. Angiology. 2018;69(9):825-34. https://doi.org/10.1177/0003319718771125 PMid:29706084 DOI: https://doi.org/10.1177/0003319718771125

Yang Y, Li Z, Tao HF, Qi XY, Wang WL, Yang L, et al. An elevated plasma level of visfatin increases the risk of myocardial infarction. Genet Mol Res. 2014;13(4):8586-95. https://doi.org/10.4238/2014.January.24.18 PMid:24615088 DOI: https://doi.org/10.4238/2014.January.24.18

Yu PL, Wang Ch, Li W, Zhang FX. Visfatin level and the risk of hypertension and cerebrovascular accident: A systematic review and meta-analysis. Horm Metab Res. 2019;51(4):220-9. https://doi.org/10.1055/a-0867-1333 PMid:31022738 DOI: https://doi.org/10.1055/a-0867-1333

Ozal E, Sahin I, Bolat I, Pusuroglu H, Avci II, Akgul O, et al. Visfatin levels are increased in patients with resistant hypertension and are correlated with left ventricular hypertrophy. Blood Press Monit. 2017;22(3):137-42. https://doi.org/10.1097/MBP.0000000000000245 PMid:28240682 DOI: https://doi.org/10.1097/MBP.0000000000000245

Karpushev AV, Mikhailova VB. The role of adipokines in the regulation of cardiovascular function. Arter Hypertens. 2019;25(5):448-59. https://doi.org/10.18705/1607-419X-2019-25-5-448-459 DOI: https://doi.org/10.18705/1607-419X-2019-25-5-448-459

Stejskal D, Vaclavik J, Smekal A, Svobodova G, Richterova R, Svestak M. Omentin-1 levels in patients with premature coronary artery disease, metabolic syndrome and healthy controls. Short communication. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2016;160(2):219-21. https://doi.org/10.5507/bp.2016.019 PMid:27108603 DOI: https://doi.org/10.5507/bp.2016.019

Harada K, Shibata R, Ouchi N, Tokuda Y, Funakubo H, Suzuki M, et al. Increased expression of the adipocytokine omentin in the epicardial adipose tissue of coronary artery disease patients. Atherosclerosis. 2016;251:299-304. https://doi.org/10.1016/j.atherosclerosis.2016.07.003 PMid:27450783 DOI: https://doi.org/10.1016/j.atherosclerosis.2016.07.003

Bilovol OM, Knyazkova II, Al-Travneh OV, Bogun MV, Berezin AE. Altered adipocytokine profile predicts early stage of left ventricular remodeling in hypertensive patients with type 2 diabetes mellitus. Diabetes Metab Syndr. 2020;14(2):109-16. https://doi.org/10.1016/j.dsx.2020.01.011 PMid:32032896 DOI: https://doi.org/10.1016/j.dsx.2020.01.011

Tao S, Huang YQ, Cai AP, Huang C, Zhang Y, Tang ST, et al. Association of serum omentin-1 concentrations with the presence of atrial fibrillation. Med Sci Monit. 2016;22:4749-54. https://doi.org/10.12659/msm.898202 PMid:27915353 DOI: https://doi.org/10.12659/MSM.898202

Podzolkov VI, Tarzimanova AI, Gataulin RG, Oganesyan KA, Lobova NV. The role of obesity in the development of atrial fibrillation: Current problem status. Cardiovasc Ther Prev. 2019;18(4):109-14. https://doi.org/10.15829/1728-8800-2019-4-109-114 DOI: https://doi.org/10.15829/1728-8800-2019-4-109-114

Yıldız SS, Sahin I, Cetinkal G, Aksan G, Kucuk SH, Keskin K, еt al. Usefulness of serum omentin-1 levels for the prediction of adverse cardiac events in patients with hypertrophic cardiomyopathy. Med Princ Pract. 2018;27(2):107-14. https://doi.org/10.1159/000487396 PMid:29402833 DOI: https://doi.org/10.1159/000487396

Sawicka M, Janowska J, Chudek J. Potential beneficial effect of some adipokines positively correlated with the adipose tissue content on the cardiovascular system. Int J Cardiol. 2016;222:581-9. https://doi.org/10.1016/j.ijcard.2016.07.054 PMid:27513655 DOI: https://doi.org/10.1016/j.ijcard.2016.07.054

Downloads

Published

2021-12-04

How to Cite

1.
Podzolkov V, Pokrovskaya A, Bazhanova U, Vargina T, Knyazeva SA, Vanina D. The Role of Adipokines in Cardiovascular Pathology. Open Access Maced J Med Sci [Internet]. 2021 Dec. 4 [cited 2025 Feb. 22];9(F):794-800. Available from: https://oamjms.eu/index.php/mjms/article/view/7661

Issue

Section

Narrative Review Article

Categories