SARS-CoV-2 Gene Expression as a Prognosis Predictor for COVID-19

-

Authors

  • Lelly Yuniarti Department of Biochemistry, Nutrition and Biomolecular, Faculty of Medicine, Universitas Islam Bandung, Bandung, Indonesia https://orcid.org/0000-0002-6329-1277
  • Heru Haerudin Regional Public Hospital Cideres, Majalengka, West Java, Indonesia
  • Yani Triyani Department of Clinical Pathology, Faculty of Medicine, Universitas Islam Bandung, Bandung, Indonesia
  • Herry Garna Department of Paediatric, Faculty of Medicine, Universitas Islam Bandung, Indonesia
  • Gibran Bramasta Dirgavarisya Medical Undergraduate Study Program, Faculty of Medicine, Universitas Islam Bandung, Bandung, Indonesia
  • Dika Rifky Fernanda Medical Undergraduate Study Program, Faculty of Medicine, Universitas Islam Bandung, Bandung, Indonesia
  • Adila Putri Ramandhita Medical Undergraduate Study Program, Faculty of Medicine, Universitas Islam Bandung, Bandung, Indonesia
  • Huriynazzahra Karima Medical Undergraduate Study Program https://orcid.org/0000-0003-4056-2908
  • Neng Resa Medical Undergraduate Study Program, Faculty of Medicine, Universitas Islam Bandung, Bandung, Indonesia
  • Maya Tejasari Department of Histology, Faculty of Medicine, Universitas Islam Bandung, Bandung, Indonesia https://orcid.org/0000-0001-8398-7397

DOI:

https://doi.org/10.3889/oamjms.2022.7667

Keywords:

COVID-19, Envelope gene, Gene expression, Nucleocapsid gene, Real-time quantitative PCR, Severity rate

Abstract

Introduction: Real time quantitative PCR is the gold standard for detection of SARS-CoV-2 which is specific, sensitive, and simple quantitative. The target of RT-qPCR is to assess the expression level of the SARS-CoV-2 gene through cycle threshold values (CT-value). The purpose of this study was to analyze the association of the level of SARS-CoV-2 gene expression and the severity of COVID-19 in patients hospitalized.

Method: This research is an analytic observational study with cross sectional method. While the research sample was taken using a consecutive sampling technique from the Medical Records of Sumedang Hospital and Cideres Hospital, West Java, Indonesia from December 2020 to March 2021. Patient parameters include analysis of age, sex, comorbidity, and disease severity. The severity of the patient is classified based on complaints and oxygen saturation. The expression level of the SARS-CoV-2 N gene and E gene were assessed by calculating the relative quantification by comparing the expression of the E and N gene with the expression of the internal control gene by Livak formula (2-ΔΔCT Formula).

Result: The Spearman correlation test showed that there was a relationship between the expression of SARS-CoV-2 genes E and N genes with the severity of COVID-19 patients (with r=0.374 and p<0.0001) and (with r=0.452 and p<0.0001).

Conclusions:  There is an correlation between the level of expression of genes E and gene N with the severity of patients.

 

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

Author Biography

Heru Haerudin , Regional Public Hospital Cideres, Majalengka, West Java, Indonesia

-

References

Baloch S, Baloch MA, Zheng T, Xiaofang P. The Coronavirus disease 2019 (COVID-19) pandemic. Tohoku J Exp Med. 2020;250(4):271-8. https://doi.org/10.1620/tjem.250.271 Mid:32321874 DOI: https://doi.org/10.1620/tjem.250.271

World Health Organization. Coronavirus Disease (COVID-19): Weekly Epidemiological Update. Geneva: World Health Organization; 2020.

Tsai PH, Lai WY, Lin YY, Luo YH, Lin YT, Chen HK, et al. Clinical manifestation and disease progression in COVID-19 infection. J Chin Med Assoc. 2021;84(1):3-8. https://doi.org/10.1097/JCMA.0000000000000463 PMid:33230062 DOI: https://doi.org/10.1097/JCMA.0000000000000463

Yang X, Yu Y, Xu J, Shu H, Liu H, Wu Y, et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: A single-centered, retrospective, observational study. Lancet Respir Med. 2020;8(5):475-81. https://doi.org/10.1016/S2213-2600(20)30079-5 PMid:32105632 DOI: https://doi.org/10.1016/S2213-2600(20)30079-5

Rothan HA, Byrareddy SN. The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. J Autoimmun. 2020;109:102433. https://doi.org/10.1016/j.jaut.2020.102433 PMid:32113704 DOI: https://doi.org/10.1016/j.jaut.2020.102433

Pfortmueller CA, Spinetti T, Urman RD, Luedi MM, Schefold JC, Anaesthesiology RC. COVID-19 associated acute respiratory distress syndrome (CARDS): Current knowledge on pathophysiology and ICU treatment-a narrative review. Best Pract Res Clin Anaesthesiol. 2021;35(3):351-68. https://doi.org/10.1016/j.bpa.2020.12.011.2020 Mid:34511224 DOI: https://doi.org/10.1016/j.bpa.2020.12.011

Alsuliman T, Sulaiman R, Ismail S, Srour M, Alrstom A. COVID-19 paraclinical diagnostic tools: Updates and future trends. Curr Res Transl Med. 2020;68(3):83-91. https://doi.org/10.1016/j.retram.2020.06.001 PMid:32576508 DOI: https://doi.org/10.1016/j.retram.2020.06.001

Asselah T, Durantel D, Pasmant E, Lau G, Schinaz RF. COVID-19: Discovery, diagnostics and drug development. J Hepatol. 2021;74(1):168-84. https://doi.org/10.1016/j.jhep.2020.09.031 PMid:33038433 DOI: https://doi.org/10.1016/j.jhep.2020.09.031

Layden JE, Ghinai I, Pray I, Kimball A, Layer M, Tenforde MW, et al. Pulmonary illness related to E-cigarette use in illinois and wisconsin-final report. N Engl J Med. 2020;382(10):903-16. https://doi.org/10.1056/NEJMoa1911614 PMid:31491072 DOI: https://doi.org/10.1056/NEJMoa1911614

Westblade LF, Brar G, Pinheiro LC, Paidoussis D, Rajan M, Martin P, et al. SARS-CoV-2 viral load predicts mortality in patients with and without cancer who are hospitalized with COVID-19. Cancer Cell. 2020;38(5):661-71.e2. https://doi.org/10.1016/j.ccell.2020.09.007 PMid:32997958 DOI: https://doi.org/10.1016/j.ccell.2020.09.007

Cho RH, To ZW, Yeung ZW, Tso EY, Fung KS, Chau SK, et al. COVID-19 viral load in the severity of and recovery from olfactory and gustatory dysfunction. Laryngoscope. 2020;130(11):2680-5. https://doi.org/10.1002/lary.29056 PMid:32794209 DOI: https://doi.org/10.1002/lary.29056

Dramé M, Teguo MT, Proye E, Hequet F, Hentzien M, Kanagaratnam L, et al. Should RT‐PCR be considered a gold standard in the diagnosis of COVID‐19? J Med Virol. 2020;92(11):2312-3. https://doi.org/10.1002/jmv.25996 Mid:32383182 DOI: https://doi.org/10.1002/jmv.25996

Long C, Xu H, Shen Q, Zhang X, Fan B, Wang C, et al. Diagnosis of the Coronavirus disease (COVID-19): rRT-PCR or CT? Eur J Radiol. 2020;126:108961. https://doi.org/10.1016/j.ejrad.2020.108961 PMid:32229322 DOI: https://doi.org/10.1016/j.ejrad.2020.108961

Tahamtan A, Ardebili A. Real-time RT-PCR in COVID-19 detection: Issues affecting the results. Expert Rev Mol Diagn. 2020;20(5):453-4. https://doi.org/10.1080/14737159.2020.1757437 Mid:32297805 DOI: https://doi.org/10.1080/14737159.2020.1757437

Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 2001;25(4):402-8. https://doi.org/10.1006/meth.2001.1262 Mid:11846609 DOI: https://doi.org/10.1006/meth.2001.1262

Erlina et al. Pedoman Tatalaksana COVID-19 Edisi 3. Perhimpunan Dokter Paru Indonesia. Jakarta. 2020

Cahyani I, Putro EW, Ridwanuloh AM, Wibowo SH, Hariyatun H, Syahputra G, et al. Genome Profiling of SARS-CoV-2 in Indonesia, ASEAN, and the Neighbouring East Asian Countries: Features, Challenges, and Achievements; 2021. DOI: https://doi.org/10.1101/2021.07.06.451270

Rozenberg S, Vandromme J, Martin CJ. Are we equal in adversity? Does COVID-19 affect women and men differently? Maturitas. 2020;138:62-68. https://doi.org/10.1016/j.maturitas.2020.05.009 PMid:32425315 DOI: https://doi.org/10.1016/j.maturitas.2020.05.009

Liu H, Chen S, Liu M, Nie H, Lu H. Comorbid chronic diseases are strongly correlated with disease severity among COVID-19 patients: A systematic review and meta-analysis. Aging Dis. 2020;11(3):668-78. https://doi.org/10.14336/AD.2020.0502 PMid:32489711 DOI: https://doi.org/10.14336/AD.2020.0502

Gebhard C, Regitz-Zagrosek V, Neuhauser HK, Morgan R, Klein SL. Impact of sex and gender on COVID-19 outcomes in Europe. Biol Sex Differ. 2020;11:29. https://doi.org/10.1186/s13293-020-00304-9 PMid:32450906 DOI: https://doi.org/10.1186/s13293-020-00304-9

Palaiodimos L, Kokkinidis DG, Li W, Karamanis D, Ognibene J, Arora S, et al. Severe obesity, increasing age and male sex are independently associated with worse in-hospital outcomes, and higher in-hospital mortality, in a cohort of patients with COVID-19 in the Bronx, New York. Metabolism. 2020;108:154262. https://doi.org/10.1016/j.metabol.2020.154262 PMid:32422233 DOI: https://doi.org/10.1016/j.metabol.2020.154262

Alam MR, Kabir MR, Reza S. Comorbidities might be a risk factor for the incidence of COVID-19: Evidence from a web-based survey. Prev Med Rep. 2021;21:101319. https://doi.org/10.1016/j.pmedr.2021.101319 Mid:33489728 DOI: https://doi.org/10.1016/j.pmedr.2021.101319

Mousavizadeh L, Ghasemi SJ. Genotype and phenotype of COVID-19: Their roles in pathogenesis. J Microbiol Immunol Infect. 2021;54(2):159-63. https://doi.org/10.1016/j.jmii.2020.03.022 PMid:32265180 DOI: https://doi.org/10.1016/j.jmii.2020.03.022

Jain A, Pandey A, Kaur J, Kumar L, Singh M, Das S, et al. Is there a correlation between viral load and olfactory and taste dysfunction in COVID-19 patients? 2021;42(3):102911. https://doi.org/10.1016/j.amjoto.2021.102911 Mid:33476975 DOI: https://doi.org/10.1016/j.amjoto.2021.102911

Yuki K, Fujiogi M, Koutsogiannaki S. COVID-19 pathophysiology: A review. 2020;215:108427. https://doi.org/10.1016/j.clim.2020.108427 Mid:32325252 DOI: https://doi.org/10.1016/j.clim.2020.108427

Fajnzylber J, Regan J, Coxen K, Corry H, Wong C, Rosenthal A, et al. SARS-CoV-2 viral load is associated with increased disease severity and mortality. Nat Commun. 2020;11(1):5493. https://doi.org/10.1038/s41467-020-19057-5 PMid:33127906 DOI: https://doi.org/10.21203/rs.3.rs-43878/v1

Huang G, Kovalic AJ, Graber CJ. Prognostic value of leukocytosis and lymphopenia for coronavirus disease severity. Emerg Infect Dis. 2020;26(8):1839-41. https://doi.org/10.3201/eid2608.201160 PMid:32384045 DOI: https://doi.org/10.3201/eid2608.201160

Liao YC, Liang WG, Chen FW, Hsu JH, Yang JJ, Chang MS. IL-19 induces production of IL-6 and TNF-α and results in cell apoptosis through TNF-α. J Immunol. 2002;169(8):4288-97. https://doi.org/10.4049/jimmunol.169.8.4288 PMid:12370360 DOI: https://doi.org/10.4049/jimmunol.169.8.4288

Aggarwal S, Gollapudi S, Gupta S. Increased TNF-α-induced apoptosis in lymphocytes from aged humans: Changes in TNF-α receptor expression and activation of caspases. J Immunol. 1999;162(4):2154-61. PMid:9973490

Han A, Czajkowski LM, Donaldson A, Baus HA, Reed SM, Athota RS, et al. A dose-finding study of a wild-type influenza A (H3N2) virus in a healthy volunteer human challenge model. Clin Infect Dis. 2019;69(12):2082-90. https://doi.org/10.1093/cid/ciz141 PMid:30770534 DOI: https://doi.org/10.1093/cid/ciz141

Chidambaram V, Tun NL, Haque WZ, Majella MG, Sivakumar RK, Kumar A, et al. Factors associated with disease severity and mortality among patients with COVID-19: A systematic review and meta-analysis. PLoS One. 2020;15(11):e0241541. https://doi.org/10.1371/journal.pone.0241541 PMid:33206661 DOI: https://doi.org/10.1371/journal.pone.0241541

Gulsen A, Konig IR, Jappe U, Dromann D. Effect of comorbid pulmonary disease on the severity of COVID-19: A systematic review and meta-analysis. Respirology. 2021;26(6):552-65. https://doi.org/10.1111/resp.14049 PMid:33955623 DOI: https://doi.org/10.1111/resp.14049

Wang X, Fang X, Cai Z, Wu X, Gao X, Min J, et al. Comorbid chronic diseases and acute organ injuries are strongly correlated with disease severity and mortality among COVID-19 patients: A systemic review and meta-analysis. Research (Wash DC). 2020;2020:2402961. https://doi.org/10.34133/2020/2402961 PMid:32377638 DOI: https://doi.org/10.34133/2020/2402961

Choudhary S, Sreenivasulu K, Mitra P, Misra S, Sharma P. Role of genetic variants and gene expression in the susceptibility and severity of COVID-19. Ann Lab Med. 2021;41(2):129-38. https://doi.org/10.3343/alm.2021.41.2.129 PMid:33063674 DOI: https://doi.org/10.3343/alm.2021.41.2.129

Han MS, Byun JH, Cho Y, Rim JH. RT-PCR for SARS-CoV-2: Quantitative versus qualitative. Lancet Infect Dis. 2021;21(2):165. https://doi.org/10.1016/S1473-3099(20)30424-2 PMid:32445709 DOI: https://doi.org/10.1016/S1473-3099(20)30424-2

Lieberman JA, Pepper G, Naccache SN, Huang ML, Jerome KR, Greninger AL. Comparison of commercially available and laboratory-developed assays for in vitro detection of SARS-CoV-2 in clinical laboratories. J Clin Microbiol. 2020;58(8):e00821-20. https://doi.org/10.1128/JCM.00821-20 PMid:32350048 DOI: https://doi.org/10.1128/JCM.00821-20

Pujadas E, Ibeh N, Hernandez MM, Waluszko A, Sidorenko T, Flores V, et al. Comparison of SARS‐CoV‐2 detection from nasopharyngeal swab samples by the Roche cobas 6800 SARS‐CoV‐2 test and a laboratory‐developed real‐time RT‐PCR test. J Med Virol. 2020;92(9):1695-8. https://doi.org/10.1002/jmv.25988 PMid:32383179 DOI: https://doi.org/10.1002/jmv.25988

Downloads

Published

2022-02-03

How to Cite

1.
Yuniarti L, Haerudin H, Triyani Y, Garna H, Dirgavarisya GB, Fernanda DR, Ramandhita AP, Karima H, Resa N, Tejasari M. SARS-CoV-2 Gene Expression as a Prognosis Predictor for COVID-19: -. Open Access Maced J Med Sci [Internet]. 2022 Feb. 3 [cited 2024 Apr. 20];10(B):210-5. Available from: https://oamjms.eu/index.php/mjms/article/view/7667

Issue

Section

Infective Diseases

Categories

Most read articles by the same author(s)