Potential Combinations of Pasak Bumi (Eurycoma longifolia Jack), Docosahexaenoic Acid, and Seluang Fish (Rasbora spp.) to Improving Oxidative Stress of Rats (Rattus norvegicus) Brain Undernutrition

Authors

  • Didik Dwi Sanyoto Department of Biomedical, Division of Anatomy, Faculty of Medicine, Universitas Lambung Mangkurat, Banjarmasin, Indonesia
  • Meitria Syahadatina Noor Department of Public Health, Faculty of Medicine, Universitas Lambung Mangkurat, Banjarmasin, Indonesia
  • Triawanti Triawanti Department of Biochemistry and Biomolecular, Faculty of Medicine, Universitas Lambung Mangkurat, Banjarmasin, Indonesia

DOI:

https://doi.org/10.3889/oamjms.2022.7671

Keywords:

Oxidative stress in the brain, Undernutrition, Pasak bumi, Docosahexaenoic acid, Seluang fish

Abstract

BACKGROUND: The brain is very susceptible to damage from oxidative stress due to undernutrition. Provision of nutrients and compounds that act as antioxidants is needed to improve oxidative stress in the brain.

AIM: This study was conducted with the aim of proving the potential of the combination of pasak bumi (Eurycoma longifolia Jack), DHA, and seluang fish (Rasbora Spp.) to improve oxidative stress in the brains of undernourished rats (Rattus norvegicus).

METHODS: Once the rats were undernourished, they were divided: positive control (KP) = undernourished rats + placebo + standard feed; (P1) = undernourished rats + 70% ethanol extract of pasak bumi root (EPB) 15 mg/kg BW + standard feed; (P2) = undernourished rats + DHA 1 mg/kgBW + standard feed; (P3) = undernourished rats + EPB 15 mg/kg BW + DHA 1 mg/kg BW + standard feed; (P4) = undernourished rats + seluang fish; (P5) = undernourished rats + EPB 15 mg/kg BW + seluang fish for 5 weeks; plus 1 negative control group (KN) that is healthy rats given placebo and standard feed. The parameters included superoxide dismutase (SOD) activity, catalase, peroxide (H2O2) and malondialdehyde (MDA) levels. Data analysis used the Kruskall-Wallis test followed by Mann Whitney with a significance level of 95%.

RESULTS: There were significant differences in the activity of SOD (p = 0.001), catalase (p = 0.000), peroxide levels (p = 0.000), and MDA (p = 0.000) between treatments. The group that was given a combination of EPB 15 mg/kg BW and DHA 1 mg/kg BW showed better SOD and catalase activity, and lower levels of peroxide and MDA than the other groups.

CONCLUSION: The combination of 70% ethanol extract of pasak bumi 15 mg/kg BW and DHA 1 mg/kg BW has the best potential to improve brain oxidative stress in undernourished rats compared to single administration of 15 mg/kg BW EPB, DHA, or seluang fish alone.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

Wiktorska JA, Lewinski A, Sewerynek E. Effects of different antioxidants on lipid peroxidation in brain homogenates, induced by L-thyroxine administration in rats. Neuro Endocrinol Lett. 2005;26(6):704-8. PMid:16380675

Radosavljevic T, Mladenovic D, Ninkovic M, Vučević D, Boričić I, Ješić-Vukićević R, et al. Oxidative stress in rat liver during acute cadmium and ethanol intoxication. J Serb Chem Soc. 2012;77(2):159-76. DOI: https://doi.org/10.2298/JSC110330174R

Khare M, Mohanty C, Das BK, Jyoti A, Mukhopadhyay B, Mishra SP. Free radicals and antioxidant status in protein energy malnutrition. Int J Pediatr. 2014;2014:254396. https://doi.org/10.1155/2014/254396 PMid:24790610 DOI: https://doi.org/10.1155/2014/254396

Triawanti T, Sanyoto DD, Nur’amin HW. Reduction of oxidative stress by seluang fish (Rasbora spp.) in brain of malnourished rats (Rattus norvegicus). Int J Food Eng. 2017;3(2):107-11. https://doi.org/10.18178/ijfe.3.2.107-111 DOI: https://doi.org/10.18178/ijfe.3.2.107-111

Sanyoto DD, Asnawati A, Triawanti T. Effect of DHA suplementation on the MDA and SOD levels in protein malnurished rats. J Phys. 2019;1374:012050. https://doi.org/10.1088/1742-6596/1374/1/012050 DOI: https://doi.org/10.1088/1742-6596/1374/1/012036

Sakai C, Ishida M, Ohba H, Yamashita H, Uchida H, Yoshizumi M, et al. Fish oil omega-3 polyunsaturated fatty acids attenuate oxidative stress-induced DNA damage in vascular endothelial cells. PLoS One. 2017;12(11):e0187934. https://doi.org/10.1371/journal.pone.0187934 PMid:29121093 DOI: https://doi.org/10.1371/journal.pone.0187934

Triawanti T, Sanyoto DD, Noor MS. The supplementation of pasak bumi (Eurycoma longifolia Jack.) in undernourished rats to increase spatial memory through antioxidant mechanism. Clin Nutr Exp. 2020;33:49-59. DOI: https://doi.org/10.1016/j.yclnex.2020.08.002

Suhartono E, Setiawan B. Model indeks peroksidatif dan indeks protein teroksidasi saliva penderita tuberkulosis paru berdasarkan lama pengobatan. JKM. 2010;2(9):118-23.

Wijeratne SS, Cuppet SL, Schlegel V. Hydrogen peroxide induced oxidative stress damage and antioxidant enzyme response in caco-2 human colon cells. J Agric Food Chem 2005;53(22):8768-74. https://doi.org/10.1021/jf0512003 PMid:16248583 DOI: https://doi.org/10.1021/jf0512003

Candan N. Changes in chlorophyll-carotenoid contents, antioxidant enzyme activities and lipid peroxidation levels in Zn-stressed Mentha pulegium. Turk J Chem. 2003;27(1):21-30. DOI: https://doi.org/10.1016/S0981-9428(02)00006-2

Wang X, Michaelis EK. Selective neuronal vulnerability to oxidative stress in the brain. Front Aging Neurosci. 2010;2:12. https://doi.org/10.3389/fnagi.2010.00012 PMid:20552050 DOI: https://doi.org/10.3389/fnagi.2010.00012

Mendez-Armenta M, Nava-Ruiz C, Juarez-Rebollar D, Rodriguez-Martinez E, Gomez PY. Oxidative stress associated with neuronal apoptosis in experimental models of epilepsy. Oxid Med Cell Longev. 2014;2014:293689. https://doi.org/10.1155/2014/293689 PMid:25614776 DOI: https://doi.org/10.1155/2014/293689

Perampalli T, Swami SC, Kumbar KM, Suryakar AN, Shaikh AK. Possible role of oxidative stress in malnourished children. Curr Pediatr Res. 2010;14(1):19-23.

Banjarnahor SD, Artanti N. Antioxidant properties of flavonoids. Med J Indones. 2014;23(4):239-44. DOI: https://doi.org/10.13181/mji.v23i4.1015

Wang T, Li Q, Bi K. Bioactive flavonoids in medicinal plants: Structure, activity and biological fate. Asian J Pharm Sci. 2018;13(1):12-23. https://doi.org/10.1016/j.ajps.2017.08.004 PMid:32104374 DOI: https://doi.org/10.1016/j.ajps.2017.08.004

Meital LT, Windsor MT, Perissiou M, Schulze K, Magee R, Kuballa A, et al. Omega-3 fatty acids decrease oxidative stress and inflammation in macrophages from patients with small abdominal aortic aneurysm. Sci Rep. 2019;9(1):12978. https://doi.org/10.1038/s41598-019-49362-z PMid:31506475 DOI: https://doi.org/10.1038/s41598-019-49362-z

Clementi ME, Lazzarino G, Sampaolese B, Brancato A, Tringali G. DHA protects PC12 cells against oxidative stress and apoptotic signals through the activation of the NFE2L2/ HO-1 axis. Int J Mol Med. 2019;43(6):2523-31. https://doi.org/10.3892/ijmm.2019.4170 PMid:31017264 DOI: https://doi.org/10.3892/ijmm.2019.4170

Hashimoto M, Hossain S, Al Mamun A, Matsuzaki K, Arai H. Docosahexaenoic acid: One molecule diverse functions. Crit Rev Biotechnol. 2017;37(5):579-97. https://doi.org/10.1080/07388551.2016.1207153 PMid:27426008 DOI: https://doi.org/10.1080/07388551.2016.1207153

Piste P. Cysteine-master antioxidant. Int J Pharm Chem Biol Sci. 2013;3:143-9.

Liu R, Xing L, Fu Q, Guang-Hong Z, Wan-Gang Z. A review of antioxidant peptides derived from meat muscle and by-products. Antioxidants 2016;5(3):32. https://doi.org/10.3390/antiox5030032 PMid:27657142 DOI: https://doi.org/10.3390/antiox5030032

Esfandi R, Walters ME, Tsopmo A. Antioxidant properties and potential mechanisms of hydrolyzed proteins and peptides from cereals. Heliyon. 2019;5(4):e01538. https://doi.org/10.1016/j.heliyon.2019.e01538 PMid:31183417 DOI: https://doi.org/10.1016/j.heliyon.2019.e01538

Downloads

Published

2022-01-01

How to Cite

1.
Sanyoto DD, Syahadatina Noor M, Triawanti T. Potential Combinations of Pasak Bumi (Eurycoma longifolia Jack), Docosahexaenoic Acid, and Seluang Fish (Rasbora spp.) to Improving Oxidative Stress of Rats (Rattus norvegicus) Brain Undernutrition. Open Access Maced J Med Sci [Internet]. 2022 Jan. 1 [cited 2024 Nov. 21];10(A):25-32. Available from: https://oamjms.eu/index.php/mjms/article/view/7671