Effect of Exercise-Induced Lipolysis on Serum Vitamin D Level in Obese Children: A Clinical Controlled Trial

Authors

  • Lamiaa K. Elsayyad Department of Physical Therapy, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
  • Alaa Shafie Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia https://orcid.org/0000-0002-7116-3611
  • Mazen Almehmadi Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia https://orcid.org/0000-0002-7580-8667
  • Amal F. Gharib Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
  • Ahmad El Askary Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
  • Tarek Alsayad Department of Pediatrics, Faculty of Medicine, Al-Azhar University, Cairo, Egypt https://orcid.org/0000-0002-9655-6067
  • Alsufiany Muhsen Department of Physical Therapy, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
  • Hatem Allam Department of Physical Therapy, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia

DOI:

https://doi.org/10.3889/oamjms.2021.7707

Keywords:

Obesity, Endurance, Resistance exercise, Lipolysis, Vitamin D

Abstract

BACKGROUND: Low Vitamin D levels associated with obesity have reached an epidemic level all over the world. It has been supposed that the low serum level of Vitamin D3 in obese subjects may be due to an increase in the uptake of Vitamin D3 by adipose tissue.

AIM: The current study aimed to investigate the effect of a specially designed exercise program for boosting lipolysis on the Vitamin D level in obese children.

METHODS: Thirty obese male children participated in the study. Their age was ranged from 9 to 11 years. The participants were assigned to two groups, Group I (GI) who received endurance exercise (ENE) only and Group II (GII) who received the specially designed exercise for increasing lipolysis (ENE preceded by resistance exercise). Free fatty acids (FFA), glycerol, and 25(OH)D were assessed before and immediately after exercise.

RESULTS: FFA and glycerol showed a significant increase in both groups following exercise, while 25(OH)D showed a significant increase only in GII. GII showed significantly higher levels of FFA, glycerol, and 25(OH)D following exercise when it was compared to GI.

CONCLUSION: The application of resistance training before ENE could improve the Vitamin D status through increasing the lipolytic activities more than the application of endurance exercise alone.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

Ebbeling CB, Pawlak DB, Ludwig DS. Childhood obesity: Public-health crisis, common sense cure. Lancet. 2002;360(9331):473-82. https://doi.org/10.1016/S0140-6736(02)09678-2 PMid:12241736 DOI: https://doi.org/10.1016/S0140-6736(02)09678-2

Al-Dossary SS, Sarkis PE, Hassan A, El Regal ME, Fouda AE. Obesity in Saudi children: A dangerous reality. East Mediterr Health J. 2010;16(9):1003-8. PMid:21218729 DOI: https://doi.org/10.26719/2010.16.9.1003

El-Hazmi MA, Warsy AS. Prevalence of obesity in the Saudi population. Ann Saudi Med. 1997;17(3):302-6. https://doi.org/10.5144/0256-4947.1997.302 PMid:17369727 DOI: https://doi.org/10.5144/0256-4947.1997.302

Lawson DE, Douglas J, Lean M, Sedrani S. Estimation of Vitamin D3 and 25-hydroxyvitamin D3 in muscle and adipose tissue of rats and man. Clin Chim Acta. 1986;157(2):175-81. https://doi.org/10.1016/0009-8981(86)90223-8 PMid:3013467 DOI: https://doi.org/10.1016/0009-8981(86)90223-8

Wortsman J, Matsuoka LY, Chen TC, Lu Z, Holick MF. Decreased bioavailability of Vitamin D in obesity. Am J Clin Nutr. 2000;72(3):690-3. https://doi.org/10.1093/ajcn/72.3.690 PMid:10966885 DOI: https://doi.org/10.1093/ajcn/72.3.690

Sun X, Morris KL, Zemel MB. Role of calcitriol and cortisol on human adipocyte proliferation and oxidative and inflammatory stress: A microarray study. Lifestyle Genomics. 2008;1(1-2):30-48. DOI: https://doi.org/10.1159/000109873

Landrier JF, Karkeni E, Marcotorchino J, Bonnet L, Tourniaire F. Vitamin D modulates adipose tissue biology: Possible consequences for obesity? Proc Nutr Soc. 2016;75(1):38-46. https://doi.org/10.1017/S0029665115004164 PMid:26564334 DOI: https://doi.org/10.1017/S0029665115004164

Vimaleswaran KS, Berry DJ, Lu C, Tikkanen E, Pilz S, Hiraki LT, et al. Causal relationship between obesity and Vitamin D status: Bi-directional Mendelian randomization analysis of multiple cohorts. PLoS Med. 2013;10(2):e1001383. https://doi.org/10.1371/journal.pmed.1001383 PMid:23393431 DOI: https://doi.org/10.1371/journal.pmed.1001383

Arunabh S, Pollack S, Yeh J, Aloia JF. Body fat content and 25-hydroxyvitamin D levels in healthy women. J Clin Endocrinol Metab. 2003;88(1):157-61. https://doi.org/10.1210/jc.2002-020978 PMid:12519845 DOI: https://doi.org/10.1210/jc.2002-020978

Hirshman MF, Wardzala LJ, Goodyear LJ, Fuller SP, Horton ED, Horton ES. Exercise training increases the number of glucose transporters in rat adipose cells. Am J Physiol Endocrinol Metab. 1989;257(4):E520-30. https://doi.org/10.1152/ajpendo.1989.257.4.E520 PMid:2801935 DOI: https://doi.org/10.1152/ajpendo.1989.257.4.E520

Sutherland LN, Bomhof MR, Capozzi LC, Basaraba SA, Wright DC. Exercise and adrenaline increase PGC‐1α mRNA expression in rat adipose tissue. J Physiol. 2009;587(7):1607-17. https://doi.org/10.1113/jphysiol.2008.165464 PMid:19221126 DOI: https://doi.org/10.1113/jphysiol.2008.165464

Stallknecht B, Vinten J, Ploug T, Galbo H. Increased activities of mitochondrial enzymes in white adipose tissue in trained rats. Am J Physiol Endocrinol Metab. 1991;261(3):E410-4. https://doi.org/10.1152/ajpendo.1991.261.3.E410 PMid:1653528 DOI: https://doi.org/10.1152/ajpendo.1991.261.3.E410

Frayn KN. Fat as a fuel: Emerging understanding of the adipose tissue-skeletal muscle axis. Acta Physiol. 2010;199(4):509-18. https://doi.org/10.1111/j.1748-1716.2010.02128.x PMid:20353493 DOI: https://doi.org/10.1111/j.1748-1716.2010.02128.x

Stallknecht B, Dela F, Helge JW. Are blood flow and lipolysis in subcutaneous adipose tissue influenced by contractions in adjacent muscles in humans? Am J Physiol Endocrinol Metab. 2007;292(2):E394-9. https://doi.org/10.1152/ajpendo.00215.2006 PMid:16985258 DOI: https://doi.org/10.1152/ajpendo.00215.2006

Crampes F, Beauville M, Riviere D, Garrigues M. Effect of physical training in humans on the response of isolated fat cells to epinephrine. J Appl Physiol. 1986;61(1):25-9. https://doi.org/10.1152/jappl.1986.61.1.25 PMid:3733612 DOI: https://doi.org/10.1152/jappl.1986.61.1.25

Crampes F, Beauville M, Riviere D, Garrigues M, Lafontan M. Lack of desensitization of catecholamine-induced lipolysis in fat cells from trained and sedentary women after physical exercise. J Clin Endocrinol Metab. 1988;67(5):1011-7. https://doi.org/10.1210/jcem-67-5-1011 PMid:3182955 DOI: https://doi.org/10.1210/jcem-67-5-1011

Fabre O, Ingerslev LR, Garde C, Donkin I, Simar D, Barres R. Exercise training alters the genomic response to acute exercise in human adipose tissue. Epigenomics. 2018;10(8):1033-50. https://doi.org/10.2217/epi-2018-0039 PMid:29671347 DOI: https://doi.org/10.2217/epi-2018-0039

Rönn T, Volkov P, Tornberg Å, Elgzyri T, Hansson O, Eriksson KF, et al. Extensive changes in the transcriptional profile of human adipose tissue including genes involved in oxidative phosphorylation after a 6‐month exercise intervention. Acta Physiol. 2014;211(1):188-200. https://doi.org/10.1111/apha.12247 PMid:24495239 DOI: https://doi.org/10.1111/apha.12247

Ruschke K, Fishbein L, Dietrich A, Klöting N, Tönjes A, Oberbach A, et al. Gene expression of PPARγ and PGC-1α in human omental and subcutaneous adipose tissues is related to insulin resistance markers and mediates beneficial effects of physical training. Eur J Endocrinol. 2010;162(3):515-23. https://doi.org/10.1530/EJE-09-0767 PMid:19966034 DOI: https://doi.org/10.1530/EJE-09-0767

AL Mulla N, Simonsen L, Bülow J. Post‐exercise adipose tissue and skeletal muscle lipid metabolism in humans: The effects of exercise intensity. J Physiol. 2000;524(3):919-28. https://doi.org/10.1111/j.1469-7793.2000.00919.x PMid:10790168 DOI: https://doi.org/10.1111/j.1469-7793.2000.00919.x

Narvaez CJ, Matthews D, Broun E, Chan M, Welsh J. Lean phenotype and resistance to diet-induced obesity in Vitamin D receptor knockout mice correlates with induction of uncoupling protein-1 in white adipose tissue. Endocrinology. 2009;150(2):651-61. https://doi.org/10.1210/en.2008-1118 PMid:18845643 DOI: https://doi.org/10.1210/en.2008-1118

Weber K, Erben RG. Differences in triglyceride and cholesterol metabolism and resistance to obesity in male and female Vitamin D receptor knockout mice. J Anim Physiol Anim Nutr (Berl). 2013;97(4):675-83. PMid:22548652 DOI: https://doi.org/10.1111/j.1439-0396.2012.01308.x

Goto K, Ishii N, Sugihara S, Yoshioka T, Takamatsu K. Effects of resistance exercise on lipolysis during subsequent submaximal exercise. Med Sci Sports Exerc. 2007;39(2):308-15. https://doi.org/10.1249/01.mss.0000246992.33482.cb PMid:17277595 DOI: https://doi.org/10.1249/01.mss.0000246992.33482.cb

Petridou A, Chatzinikolaou A, Avloniti A, Jamurtas A, Loules G, Papassotiriou I, et al. Increased triacylglycerol lipase activity in adipose tissue of lean and obese men during endurance exercise. J Clin Endocrinol Metab. 2017;102(11):3945-52. https://doi.org/10.1210/jc.2017-00168 PMid:28605462 DOI: https://doi.org/10.1210/jc.2017-00168

Kraemer WJ, Marchitelli L, Gordon SE, Harman E, Dziados JE, Mello R, et al. Hormonal and growth factor responses to heavy resistance exercise protocols. J Appl Physiol (1985). 1990;69(4):1442-50. https://doi.org/10.1152/jappl.1990.69.4.1442 PMid:2262468 DOI: https://doi.org/10.1152/jappl.1990.69.4.1442

Quisth V, Enoksson S, Blaak E, Hagström-Toft E, Arner P, Bolinder J. Major differences in noradrenaline action on lipolysis and blood flow rates in skeletal muscle and adipose tissue in vivo. Diabetologia. 2005;48(5):946-53. https://doi.org/10.1007/s00125-005-1708-4 PMid:15778861 DOI: https://doi.org/10.1007/s00125-005-1708-4

Stich V, De Glisezinski I, Berlan M, Bulow J, Galitzky J, Harant I, et al. Adipose tissue lipolysis is increased during a repeated bout of aerobic exercise. J Appl Physiol. 2000;88(4):1277-83. https://doi.org/10.1152/jappl.2000.88.4.1277 PMid:10749819 DOI: https://doi.org/10.1152/jappl.2000.88.4.1277

Thompson D, Karpe F, Lafontan M, Frayn K. Physical activity and exercise in the regulation of human adipose tissue physiology. Physiol Rev. 2012;92(1):157-91. https://doi.org/10.1152/physrev.00012.2011 PMid:22298655 DOI: https://doi.org/10.1152/physrev.00012.2011

Enevoldsen LH, Simonsen L, Macdonald IA, Bülow J. The combined effects of exercise and food intake on adipose tissue and splanchnic metabolism. J Physiol. 2004;561(3):871-82. https://doi.org/10.1113/jphysiol.2004.076588 PMid:15498802 DOI: https://doi.org/10.1113/jphysiol.2004.076588

Hengist A, Perkin O, Gonzalez JT, Betts JA, Hewison M, Manolopoulos KN, et al. Mobilising Vitamin D from adipose tissue: The potential impact of exercise. Nutr Bull. 2019;44(1):25-35. DOI: https://doi.org/10.1111/nbu.12369

Sun X, Cao ZB, Taniguchi H, Tanisawa K, Higuchi M. Effect of an acute bout of endurance exercise on serum 25(OH) D concentrations in young adults. J Clin Endocrinol Metab. 2017;102(11):3937-44. https://doi.org/10.1210/jc.2017-00146 PMid:28973380 DOI: https://doi.org/10.1210/jc.2017-00146

Żychowska M, Rola R, Borkowska A, Tomczyk M, Kortas J, Anczykowska K, et al. Fasting and exercise induce changes in serum Vitamin D metabolites in healthy men. Nutrients. 2021;13(6):1963. https://doi.org/10.3390/nu13061963 PMid:34201027 DOI: https://doi.org/10.3390/nu13061963

Mieszkowski J, Stankiewicz B, Kochanowicz A, Niespodziński B, Kowalik T, Żmijewski M, et al. Ultra-marathon-induced increase in serum levels of vitamin d metabolites: A double-blind randomized controlled trial. Nutrients. 2020;12(12):3629. https://doi.org/10.3390/nu12123629 PMid:33255807 DOI: https://doi.org/10.3390/nu12123629

Aly YE, Abdou AS, Rashad MM, Nassef MM. Effect of exercise on serum Vitamin D and tissue Vitamin D receptors in experimentally induced Type 2 diabetes mellitus. J Adv Res. 2016;7(5):671-9. https://doi.org/10.1016/j.jare.2016.07.001 PMid:27504197 DOI: https://doi.org/10.1016/j.jare.2016.07.001

Maïmoun L, Simar D, Malatesta D, Caillaud C, Peruchon E, Couret I, et al. Response of bone metabolism related hormones to a single session of strenuous exercise in active elderly subjects. Br J Sports Med. 2005;39(8):497-502. https://doi.org/10.1136/bjsm.2004.013151 PMid:16046330 DOI: https://doi.org/10.1136/bjsm.2004.013151

Downloads

Published

2021-11-30

How to Cite

1.
Elsayyad LK, Shafie A, Almehmadi M, Gharib AF, El Askary A, Alsayad T, Muhsen A, Allam H. Effect of Exercise-Induced Lipolysis on Serum Vitamin D Level in Obese Children: A Clinical Controlled Trial. Open Access Maced J Med Sci [Internet]. 2021 Nov. 30 [cited 2024 Apr. 20];9(B):1596-601. Available from: https://oamjms.eu/index.php/mjms/article/view/7707

Funding data

  • Taif University
    Grant numbers Deanship of Scientific Research, Taif University, for through the research group project number 1-441-95

Most read articles by the same author(s)