The Application of Image Segmentation to Determine the Ratio of Peritumoral Edema Area to Tumor Area on Primary Malignant Brain Tumor and Metastases through Conventional Magnetic Resonance Imaging
DOI:
https://doi.org/10.3889/oamjms.2022.7777Keywords:
Image segmentation, Ratio of peritumoral edema and tumor area, Primary malignant brain tumor, Brain metastasesAbstract
BACKGROUND: Primary malignant brain tumor and metastases on the brain have a similar pattern in conventional Magnetic Resonance Imaging (MRI), even though both require entirely different treatment and management. The pathophysiological difference of peritumoral edema can help to distinguish the case of primary malignant brain tumor and brain metastases.
AIM: This study aimed to analyze the ratio of the area of peritumoral edema to the tumor using Otsu’s method of image segmentation technique with a user-friendly Graphical User Interface (GUI).
METODS: Data was prepared by obtaining the examination results of Anatomical Pathology and MRI imaging. The area of peritumoral edema was identified from MRI image segmentation with T2/FLAIR sequence. While the area of tumor was identified using MRI image segmentation with T1 sequence.
RESULTS: The Mann-Whitney test was employed to analyze the ratio of the area of peritumoral edema to tumor on both groups. Data testing produced a significance level of 0.013 (p < 0.05) with a median value (Nmax-Nmin) of 1.14 (3.31-0.08) for the primary malignant brain tumor group and a median value (Nmax-Nmin) of 1.17 (10.30-0.90) for the brain metastases group.
CONCLUSIONS: There was a significant difference in the ratio of the area of peritumoral edema to the area of tumor from both groups, in which brain metastases have a greater value than the primary malignant brain tumor.
Downloads
Metrics
Plum Analytics Artifact Widget Block
References
Simamora SK, Zanariah Z. Space occupying lesion (SOL). J Medula. 2017;7(1):69-73.
Cramer JK, Gerstner ER, Emblem KE, Andronesi O, Rosen B. Advanced magnetic resonance imaging of the physical processes in human glioblastoma. Cancer Res. 2014;74(17):4622-37. https://doi.org/10.1158/0008-5472.CAN-14-0383 PMid:25183787 DOI: https://doi.org/10.1158/0008-5472.CAN-14-0383
Meyer VJE, Mabray MC, Cha S. Current clinical brain tumor imaging. Clin Neurosurg. 2017;81(3):397-415. https://doi.org/10.1093/neuros/nyx103 PMid:28486641 DOI: https://doi.org/10.1093/neuros/nyx103
Rahmathulla G, Toms SA, Weil RJ. The molecular biology of Brain metastases. J Oncol. 2012;2012:723541. https://doi.org/10.1155/2012/723541 PMid:22481931 DOI: https://doi.org/10.1155/2012/723541
Mabray MC, Barajas RF, Cha S. Modern brain tumor imaging. Brain Tumor Res Treat. 2015;3(1):8-23. https://doi.org/10.14791/btrt.2015.3.1.8 PMid:25977902 DOI: https://doi.org/10.14791/btrt.2015.3.1.8
Wang S, Kim S, Chawla S, Wolf RL, Knipp DE, Vossough A, et al. Differentiation between glioblastomas, solitary brain metastases, and primary cerebral lymphomas using diffusion tensor and dynamic susceptibility contrast-enhanced MR imaging. Am J Neuroradiol. 2011;32(3):507-14. https://doi.org/10.3174/ajnr.A2333 PMid:21330399 DOI: https://doi.org/10.3174/ajnr.A2333
Amborsini RD, Wang P, O’Dell WG. Computer-aided detection of metastatic brain tumors using automated 3-D template matching. J Magn Reson Imaging. 2010;31(1):85-93. https://doi.org/10.1002/jmri.22009 PMid:20027576 DOI: https://doi.org/10.1002/jmri.22009
Owonikoko TK., Arbiser J, Zelnak A, Shu HG, Shim H, Robin AM, et al. Current approaches to the treatment of metastatic brain tumours. NIH Public Access. 2014;11(4):203-22. https://doi.org/10.1038/nrclinonc.2014.25 PMid:24569448 DOI: https://doi.org/10.1038/nrclinonc.2014.25
Pope WB. Brain metastases: Neuroimaging. Handb Clin Neurol. 2018;149:89-112. https://doi.org/10.1016/B978-0-12-811161-1.00007-4 PMid:29307364 DOI: https://doi.org/10.1016/B978-0-12-811161-1.00007-4
Kunimatsu A, Kunimatsu N, Kamiya K, Watadani T, Mori H, Abe O. Comparison between glioblastoma and primary central nervous system lymphoma using MR image-based texture analysis. Magn Reson Med Sci. 2017;17(1):50-7. https://doi.org/10.2463/mrms.mp.2017-0044 PMid:28638001 DOI: https://doi.org/10.2463/mrms.mp.2017-0044
Arya RS, Ashok K. Texture, shape and color based classification of satellite images using GLCM and Gabor filter, Fuzzy C Means and Svm. Int Res J Eng Technol. 2018;5(4):751-4.
Ambarwati A, Passarella R, Sutarno. Segmentasi Citra Digital Menggunakan Thresholding Otsu untuk Analisa Perbandingan Deteksi Tepi. Vol. 2. Annual Research Seminar; 2016. p. 216-26.
Passiglia F, Caglevic C, Giovannetti E, Pinto JA, Manca P, Taverna S, et al. Primary and metastatic brain cancer genomics and emerging biomarkers for immunomodulatory cancer treatment. Semin Cancer Biol. 2018;52(Pt 2):259-68. https://doi.org/10.1016/j.semcancer.2018.01.015 PMid:29391205 DOI: https://doi.org/10.1016/j.semcancer.2018.01.015
Hanum A, Aslam AB, Yueniwati Y, Retnani DP, Setjowati N. Measurement of the peritumoral edema and tumor volume ratio in differentiating malignant primary and metastatic brain tumor. GSC Biol Pharm Sci. 2020;13(2):55-61. https://doi.org/10.30574/gscbps.2020.13.2.0295 DOI: https://doi.org/10.30574/gscbps.2020.13.2.0295
Zhou H, Wu J, Zhang J. Digital Image Processing: Part 1. London: Ventus Publishing; 2010.
Downloads
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2022 Bestia Kumala Wardani, Yuyun Yueniwati, Agus Naba (Author)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
http://creativecommons.org/licenses/by-nc/4.0