Effect of Hydraulic Retention Time on the Levels of Biochemical Oxygen Demand and Total Suspended Solid with Simple Integrated Treatment as an Alternative to Meet the Household Needs for Clean Water

Authors

  • Zulfikar Zulfikar Department of Environmental Health, Health Polytechnic of the Ministry of Health, Aceh Besar, Indonesia
  • Nasrullah Nasrullah Department of Environmental Health, Health Polytechnic of the Ministry of Health, Aceh Besar, Indonesia
  • Kartini Kartini Department of Environmental Health, Health Polytechnic of the Ministry of Health, Aceh Besar, Indonesia
  • Wiwit Aditama Department of Environmental Health, Health Polytechnic of the Ministry of Health, Aceh Besar, Indonesia

DOI:

https://doi.org/10.3889/oamjms.2022.7828

Keywords:

Domestic waste, Biochemical oxygen demand, Total suspended solid

Abstract

BACKGROUND: Domestic wastewater can cause health problems and pollute groundwater sources. Such pollution not only has a negative impact on health and the environment, but also on the cost in providing clean water.

AIM: The outcome of domestic wastewater treatment through a proper technique is expected to meet the clean water quality standard for sanitation purposes.

MATERIALS AND METHODS: The experiment was conducted to determine the effect of Hydraulic Retention Time (HRT) on the levels of Biochemical Oxygen Demand (BOD) and Total Suspended Solid (TSS) of domestic wastewater. The experiment was carried out with 6 variations of HRT, namely 1 hour, 2 hours, 4 hours, 6 hours and 8 hours with 4 repetitions. The media running process was carried out for 14 days until the reactor condition was in steady state.

RESULTS: The results showed that the removal values ​​for COD, Oil and Fat, Ammonia and Total Coliform parameters were 68.03%, 46.51%, 69.64% and 68.99%, respectively. Based on the variation of HRT of 1 hour, 2 hours, 4 hours, 6 hours and 8 hours on the BOD parameter, the removal values ​​obtained were 11.7%, 21.3%, 34.7%, 49.0% and 64.1%, respectively. Furthermore, for the TSS parameter, the values obtained were 17.3%, 25.4%, 30.6%, 42.3% and 50.4%, respectively.

CONCLUSION: HRT was proven to have a significant effect on the levels of BOD and TSS of domestic wastewater with a p-value of <0.05 at the 95% confidence level

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

Supriyatno B. Environmentally sound waste water management is a strategy and steps to deal with it. J Teknol Lingkung. 2000;1(1):159. https://doi.org/10.29122/jtl.v1i1.159

Susanti R. Mapping of Clean Water Supply System Issues to Improve the Quality of Clean Water Supply System in Sawahlunto City. J Reg City Plan. 2010;21(2):111-28.

Andiese VW. Treatment of household liquid waste using the oxidation pond method. J Tek Sipil Infrastruktur. 2010;1(2):103-10.

Indonesia R. Permen Lingkungan Hidup dan Kehutanan Republik Indonesia nomor tahun 2016 Tentang Baku Mutu Air Limbah Domestik. Jakarta: Sekretariat Negara; 2016. p. 68.

Arief LM. Pengolahan Limbah Industri: Dasar-Dasar Pengetahuan dan Aplikasi di Tempat Kerja. Penerbit Andi; 2016.

Siregar SA. Instalasi Pengolahan air Limbah. Kanisius; 2005.

Falahati H, Karimi Jashni A, Rakhshandehroo G. Effects of hydraulic retention time on the performance of a membrane bioreactor treating municipal wastewater. Water Wastewater. 2017;28(4):93-102. https://doi.org/10.22093/wwj.2017.45876

Pribadi RN, Zaman B, Purwono P. Effect of Kiambang (Salvinia Molesta) Closure Area on eduction of COD,Ammonia, Nitrite, and Nitrate in Domestic Liquid Waste (Grey Water) with Continuous System. J Tek Lingkung. 2016;5(4):1-10.

Tim Sanitasi Kota Banda Aceh. Strategi Sanitasi Kota. Vol. 1. Tim Sanitasi Kota Banda Aceh; 2009.

Pohan N. Pengolahan Limbah Cair Industri tahu Dengan Proses Biofilter Aerobik; 2008.

Khiri MZ, Matori KA, Zaid MH, Abdullah AC, Zainuddin N, Jusoh WN, et al. Soda lime silicate glass and clam shell act as precursor in synthesize calcium fluoroaluminosilicate glass to fabricate glass ionomer cement with different ageing time. J Mater Res Technol. 2020;9(3):6125-34. https://doi.org/10.1016/j.jmrt.2020.04.015 DOI: https://doi.org/10.1016/j.jmrt.2020.04.015

Rokhmadhoni RA. Kulit Kerang Sebagai Media Alternatif Filter Anaerobik Untuk Mengolah Air Limbah Domestik. Institut Teknologi Sepuluh; 2019. DOI: https://doi.org/10.12962/j23373539.v8i1.38442

Nurjanah S, Zaman B, Syakur A. Removal of Bod and Cod of Rubber Industry Liquid Waste with Aerobic Biofilter System and Plasma Dielectric Barrier Disshare (Dbd). J Tek Lingkung. 2017;6(1):1-14.

Yudo S, Said NI. Status of Ciliwung River Water Quality in DKI Jakarta Area Case Study: Installation of Online Water Quality Monitoring Station in Kelapa Dua Segment – Istiqlal Mosque. J Teknol Lingkung. 2018;19(1):13-22. https://doi.org/10.29122/jtl.v19i1.2243 DOI: https://doi.org/10.29122/jtl.v19i1.2243

Busyairi M, Adriyanti N, Kahar A, Nurcahya D, Sariyadi S. The Effectiveness of Gray Water Domestic Wastewater Treatment With Anaerobic Biofilter and Aerobic Biofilter Process (Case Study: INBIS IPAL Permata Bunda, Bontang). J Serambi Eng. 2020;5(4):1306-12. DOI: https://doi.org/10.32672/jse.v5i4.2316

Bakheet B, Prodanovic V, Deletic A, McCarthy D. Effective treatment of greywater via green wall biofiltration and electrochemical disinfection. Water Res. 2020;185:116228. https://doi.org/10.1016/j.watres.2020.116228 PMid:32736285 DOI: https://doi.org/10.1016/j.watres.2020.116228

Vigiak O, Grizzetti B, Udias-Moinelo A, Zanni M, Dorati C, Bouraoui F, et al. Predicting biochemical oxygen demand in European freshwater bodies. Sci Total Environ. 2019;666:1089-105. https://doi.org/10.1016/j.scitotenv.2019.02.252 PMid:30970475 DOI: https://doi.org/10.1016/j.scitotenv.2019.02.252

Abou-Elela SI, Hellal MS, Aly OH, Abo-Elenin SA. Decentralized wastewater treatment using passively aerated biological filter. Environ Technol. 2019;40(2):250-60. https://doi.org/10.1080/09593330.2017.1385648 PMid:29025371 DOI: https://doi.org/10.1080/09593330.2017.1385648

Beutler M, Wiltshire KH, Meyer B, Moldaenke C, Luring C, Meyerhofer M, et al. A fluorometric method for the differentiation of algal populations in vivo and in situ. Photosynth Res 2002;72:39-53. DOI: https://doi.org/10.1023/A:1016026607048

Putri AR. Determination of the optimal BOD/COD ratio in aerobic, facultative and anaerobic reactors. J Tek Lingkung. 2013;2(1):1-5.

Aguirre-Sierra A, Bacchetti-De Gregoris T, Berná A, Salas JJ, Aragón C, Esteve-Núñez A. Microbial electrochemical systems outperform fixed-bed biofilters in cleaning up urban wastewater. Environ Sci Water Res Technol. 2016;2(6):984-93. DOI: https://doi.org/10.1039/C6EW00172F

Hendriarianti E, Karnaningroem N. Evaluation of communal wastewater treatment plant operating anaerobic baffled reactor and biofilter. Waste Technol. 2016;4(1):7-12. https://doi.org/10.14710/4.1.7-12 DOI: https://doi.org/10.12777/wastech.4.1.7-12

Shah S, Yusof KW, Mustaffa Z, Mustafa A. Concentration of total suspended solids (TSS) influenced by the simulated rainfall event on highway embankment. IACSIT Int J Eng Technol. 2014;6(6):493-6. https://doi.org/10.7763/IJET.2014.V6.747 DOI: https://doi.org/10.7763/IJET.2014.V6.747

Zahra LZ. Pengolahan Limbah Rumah Makan dengan Proses Biofilter Aerobik. Institut Teknologi Sepuluh Nopember; 2015.

Champagne P, Khalekuzzaman M. A semi-passive peat biofilter system for the treatment of landfill leachate. J Water Sustain. 2014;4(2):63. https://doi.org/10.11912/jws.4.2.63-76

Azmi KN, Danumihardja IG, Said NI. Application Of Domestic Wastewater Treatment Technology Using A Combination Of Aerobic Biofilter Plastic Wasps And Gravel Media Biofilter With Upper Flow. J Air Indones. 2018;10(2):3760. https://doi.org/10.29122/jai.v10i2.3760 DOI: https://doi.org/10.29122/jai.v10i2.3760

Rahmadyanti E, Wiyono A, Firmansyah GA. Integrated system of biofilter and constructed wetland for sustainable batik industry. Int J. 2020;18(70):138-48. DOI: https://doi.org/10.21660/2020.70.61681

Chen YF, Ng WJ, Yap MG. Performance of upflow anaerobic biofilter process in pharmaceutical wastewater treatment. Resour Conserv Recycl 1994;11:83-91. https://doi.org/10.1016/0921-3449(94)90080-9 DOI: https://doi.org/10.1016/0921-3449(94)90080-9

Downloads

Published

2022-01-01

How to Cite

1.
Zulfikar Z, Nasrullah N, Kartini K, Aditama W. Effect of Hydraulic Retention Time on the Levels of Biochemical Oxygen Demand and Total Suspended Solid with Simple Integrated Treatment as an Alternative to Meet the Household Needs for Clean Water. Open Access Maced J Med Sci [Internet]. 2022 Jan. 1 [cited 2024 Apr. 19];10(E):6-11. Available from: https://oamjms.eu/index.php/mjms/article/view/7828

Issue

Section

Public Health Disease Control

Categories

Most read articles by the same author(s)