An Increase in TNF-α Levels in Fetus due to Prenatal Ischemic Hypoxia
DOI:
https://doi.org/10.3889/oamjms.2021.7840Keywords:
hypoxia, ischemic, TNF-α, prenatalAbstract
BACKGROUND: Prenatal ischemic hypoxia can increase mortality and morbidity and affect the immune system. One of the immune responses is tumor necrosis factor-α (TNF-α) levels. However, the cellular mechanism of immune response abnormalities due to prenatal hypoxia remains unclear. An 11–17-day-old fetus is a sensitive period of neural development. Brain ischemia will cause cell dysfunction and can even affect TNF-α levels. Thus, how prenatal ischemic hypoxia increases TNF-α levels in the fetus remains unclear.
AIM: This study aims to examine the effect of the onset and duration of prenatal ischemic hypoxia on TNF-α levels.
METHODOLOGY: An experimental study with a post-test control design was conducted. Thirty Rattus norvegicus were induced with prenatal ischemic hypoxia (embryos aged 7, 12, and 17 days). The independent variable was prenatal ischemic hypoxia, while the dependent variable was TNF-α levels. TNF-α was measured using the ELISA technique and was carried out when the fetus was 19 days old (E19). The TNF-α was analyzed using ANOVA, and the limit of significance was set at p < 0.05.
RESULTS: The TNF-α levels in the prenatal ischemic hypoxia group were statistically higher than in the control group (p < 0.05). The more the onset and the longer the ischemic hypoxia is, the higher the TNF-level (p < 0.05).
CONCLUSION: The prenatal ischemic hypoxia increased TNF-α levels in the fetus.
Downloads
Metrics
Plum Analytics Artifact Widget Block
References
Bakker MK, Bergman JE, Krikov S, Amar E, Cocchi G, Cragan J, et al. Prenatal diagnosis and prevalence of critical congenital heart defects: An international retrospective cohort study. BMJ Open. 2019;9(7):e028139. https://doi.org/10.1136/bmjopen-2018-028139 PMid:31270117 DOI: https://doi.org/10.1136/bmjopen-2018-028139
Aljunaidy MM, Morton JS, Cooke CM, Davidge ST. Prenatal hypoxia and placental oxidative stress: Linkages to developmental origins of cardiovascular disease. Am J Physiol Regul Integr Comp Physiol. 2017;313(4):R395-9. https://doi.org/10.1152/ajpregu.00245.2017 PMid:28794104 DOI: https://doi.org/10.1152/ajpregu.00245.2017
Gilani K, Vafakhah M. Hypoxia: A review. Arch Adv Biosci. 2010;1(2):43-60.
Taylor CT, Colgan SP. Regulation of immunity and inflammation by hypoxia in immunological niches. Nat Rev Immunol. 2017;17(12):774-85. https://doi.org/10.1038/nri.2017.103 PMid:28972206 DOI: https://doi.org/10.1038/nri.2017.103
Indriawati R. The number of lymphocyte and monosit due to hypoxic hypoxia. J Health Med Nurs. 2015;17:62-4.
Draghiciu O, Lubbers J, Nijman HW, Daemen T. Myeloid derived suppressor cells-an overview of combat strategies to increase immunotherapy efficacy. Oncoimmunology. 2015;4(1):e954829. https://doi.org/10.4161/21624011.2014.954829 PMid:25949858 DOI: https://doi.org/10.4161/21624011.2014.954829
Indriawati R, Aswin S, Susilowati R, Partadiredja G. Prenatal hypoxia-ischemia decreases spatial memory and increases aggression during adolescence. Physiol Int. 2018;105(3):210-24. https://doi.org/10.1556/2060.105.2018.3.21 PMid:30282486 DOI: https://doi.org/10.1556/2060.105.2018.3.21
Indriawati R, Aswin S, Partadiredja G, Susilowati R. Spatial memory in adulthood rat with prenatal hypoxia-ischaemia. Adv Sci Lett. 2018;23(12):12665-9. https://doi.org/10.1166/asl.2017.10842 DOI: https://doi.org/10.1166/asl.2017.10842
Sab IM, Ferraz MM, Amaral TA, Resende AC, Ferraz MR, Matsuura C, et al. Prenatal hypoxia, habituation memory and oxidative stress. Pharmacol Biochem Behav. 2013;107:24-8. https://doi.org/10.1016/j.pbb.2013.04.004 PMid:23584097 DOI: https://doi.org/10.1016/j.pbb.2013.04.004
Rauchová H, Vokurková M, Koudelová J. Hypoxia-induced lipid peroxidation in the brain during postnatal ontogenesis. Physiol Res. 2012;61:S89-101. https://doi.org/10.33549/physiolres.932374 PMid:22827877 DOI: https://doi.org/10.33549/physiolres.932374
Mueller. HHS public access. Physiol Behav. 2016;176(1):139- 48. https://doi.org/10.1002/jnr.23540 DOI: https://doi.org/10.1002/jnr.23540
Paardekooper LM, Bendix MB, Ottria A, de Haer LW, Ter Beest M, Radstake TR, et al. Hypoxia potentiates monocyte-derived dendritic cells for release of tumor necrosis factor α via MAP3K8. Biosci Rep. 2018;38(6):BSR20182019. https://doi.org/10.1042/BSR20182019 PMid:30463908 DOI: https://doi.org/10.1042/BSR20182019
Mercogliano MF, Bruni S, Mauro F, Elizalde PV, Schillaci R. Harnessing Tumor Necrosis Factor Alpha to Achieve Effective Cancer Immunotherapy. Cancers (Basel) 2021;13:564. https://doi.org/10.3390/cancers13030564 PMid:33540543 DOI: https://doi.org/10.3390/cancers13030564
Osborne LM, Monk C. Perinatal depression-the fourth inflammatory morbidity of pregnancy?: Theory and literature review. Psychoneuroendocrinology. 2013;38(10):1929-52. https://doi.org/10.1016/j.psyneuen.2013.03.019 PMid:23608136 DOI: https://doi.org/10.1016/j.psyneuen.2013.03.019
Dunwoodie SL. The role of hypoxia in development of the mammalian embryo. Dev Cell. 2009;17(6):755-73. https://doi.org/10.1016/j.devcel.2009.11.008 PMid:20059947 DOI: https://doi.org/10.1016/j.devcel.2009.11.008
Uyun HF, Indriawati R. Effect of hypoxia duration to the erythrocyte and hemoglobin rattus norvegicus. Mutiara Med. 2013;13(1):49-54.
Groten T, Lehmann T, Schleußner E, PETN Study Group. Does Pentaerytrithyltetranitrate reduce fetal growth restriction in pregnancies complicated by uterine mal-perfusion? Study protocol of the PETN-study: A randomized controlled multicenter-trial. BMC Pregnancy Childbirth. 2019;19(1):336. https://doi.org/10.1186/s12884-019-2456-7 PMid:31521118 DOI: https://doi.org/10.1186/s12884-019-2456-7
Guerby P, Tasta O, Swiader A, Pont F, Bujold E, Parant O, et al. Role of oxidative stress in the dysfunction of the placental endothelial nitric oxide synthase in preeclampsia. Redox Biol. 2021;40:101861. https://doi.org/10.1016/j.redox.2021.101861 PMid:33548859 DOI: https://doi.org/10.1016/j.redox.2021.101861
Crisostomo PR, Wang Y, Markel TA, Wang M, Lahm T, Meldrum DR. Human mesenchymal stem cells stimulated by TNF-α, LPS, or hypoxia produce growth factors by an NFκB but not JNK-dependent mechanism. Am J Physiol Cell Physiol. 2008;294(3):675-82. https://doi.org/10.1152/ajpcell.00437.2007 DOI: https://doi.org/10.1152/ajpcell.00437.2007
Carpentier PA, Dingman AL, Palmer TD. Placental TNF-α signaling in illness-induced complications of pregnancy. Am J Pathol. 2011;178(6):2802-10. https://doi.org/10.1016/j.ajpath.2011.02.042 DOI: https://doi.org/10.1016/j.ajpath.2011.02.042
Vendrell J, Maymó-Masip E, Tinahones F, García-España A, Megia A, Caubet E, et al. Tumor necrosis-like weak inducer of apoptosis as a proinflammatory cytokine in human adipocyte cells: Up-regulation in severe obesity is mediated by inflammation but not hypoxia. J Clin Endocrinol Metab. 2010;95(6):2983-92. https://doi.org/10.1210/jc.2009-2481 PMid:20382683 DOI: https://doi.org/10.1210/jc.2009-2481
Ma Y, Li Y, Jiang L, Wang L, Jiang Z, Wang Y, et al. Macrophage depletion reduced brain injury following middle cerebral artery occlusion in mice. J Neuroinflammation. 2016;13:38. https://doi.org/10.1186/s12974-016-0504-z PMid:26873581 DOI: https://doi.org/10.1186/s12974-016-0504-z
Tashiro N, Segawa R, Tobita R, Asakawa S, Mizuno N, Hiratsuka M, et al. Hypoxia inhibits TNF-α-induced TSLP expression in keratinocytes. PLoS One. 2019;14(11):e0224705. https://doi.org/10.1371/journal.pone.0224705 PMid:31682627 DOI: https://doi.org/10.1371/journal.pone.0224705
Ritzel RM, Patel AR, Grenier JM, Crapser J, Verma R, Jellison ER, et al. Functional differences between microglia and monocytes after ischemic stroke. J Neuroinflammation. 2015;12:106. https://doi.org/10.1186/s12974-015-0329-1 PMid:26022493 DOI: https://doi.org/10.1186/s12974-015-0329-1
Winkles JA. The TWEAK-Fn14 cytokine-receptor axis: Discovery, biology and therapeutic targeting. Nat Rev Drug Discov. 2008;7(5):411-25. https://doi.org/10.1038/nrd2488 PMid:18404150 DOI: https://doi.org/10.1038/nrd2488
Bird TG, Lu WY, Boulter L, Gordon-Keylock S, Ridgway RA, Williams MJ, et al. Bone marrow injection stimulates hepatic ductular reactions in the absence of injury via macrophage mediated TWEAK signaling. Proc Natl Acad Sci USA. 2013;110(16):6542-7. https://doi.org/10.1073/pnas.1302168110 PMid:23576749 DOI: https://doi.org/10.1073/pnas.1302168110
Mastaglia FL. Pathological changes in skeletal muscle in acromegaly. Acta Neuropathol. 1973;24(4):273-86. https://doi.org/10.1007/BF00685584 PMid:4722362 DOI: https://doi.org/10.1007/BF00685584
Munford RS, Pugin J. Normal responses to injury prevent systemic inflammation and can be immunosuppressive. Am J Respir Crit Care Med. 2001;163(2):316-21. https://doi.org/10.1164/ajrccm.163.2.2007102 PMid:11179099 DOI: https://doi.org/10.1164/ajrccm.163.2.2007102
Walker AK, Kavelaars A, Heijnen CJ, Dantzer R. Neuroinflammation and comorbidity of pain and depression. Pharmacol Rev. 2014;66(1):80-101. https://doi.org/10.1124/pr.113.008144 PMid:24335193 DOI: https://doi.org/10.1124/pr.113.008144
Zweier NIH public access. Bone. 2014;23(1):1-7. https://doi.org/10.1016/j.jpsychires.2011.08.006 DOI: https://doi.org/10.1016/j.jpsychires.2011.08.006
Murphy TJ, Paterson HM, Mannick JA, Lederer JA. Injury, sepsis, and the regulation of Toll-like receptor responses. J Leukoc Biol. 2004;75(3):400-7. https://doi.org/10.1189/jlb.0503233 PMid:14557385 DOI: https://doi.org/10.1189/jlb.0503233
Amor S, Puentes F, Baker D, van der Valk P. Inflammation in neurodegenerative diseases. Immunology. 2010;129(2):154-69. https://doi.org/10.1111/j.1365-2567.2009.03225.x PMid:20561356 DOI: https://doi.org/10.1111/j.1365-2567.2009.03225.x
Downloads
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2021 Ratna Indriawati, Nurvita Risdiana, Tunjung Wibowo (Author)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
http://creativecommons.org/licenses/by-nc/4.0