Phytochemical Analysis Both of Water and Ethanol Extract from Some Herbs Combinations, Nanoemulsion Formulation, and Antioxidant Effects

Authors

  • Sri Atun Department of Chemistry Education, Faculty Mathematics and Natural Science, Universitas Negeri Yogyakarta, Yogyakarta, Indonesia https://orcid.org/0000-0002-6225-4255
  • Kartika R Pertiwi Department of Biology Education, Faculty Mathematics and Natural Science, Universitas Negeri Yogyakarta, Yogyakarta, Indonesia image/svg+xml https://orcid.org/0000-0002-0996-6210
  • Mahclisatul Qolbiah Department of Chemistry Education, Faculty Mathematics and Natural Science, Universitas Negeri Yogyakarta, Yogyakarta, Indonesia image/svg+xml
  • Salsabila Safa Department of Chemistry Education, Faculty Mathematics and Natural Science, Universitas Negeri Yogyakarta, Yogyakarta, Indonesia image/svg+xml

DOI:

https://doi.org/10.3889/oamjms.2022.7886

Keywords:

Antioxidant, Combination herbs, Nanoemulsion

Abstract

AIM: The purpose of this study was to analyze the phenolic content and antioxidant activity of both water and ethanol extracts of a combination of several herbs (Phyllanthus urinaria, Andrographis paniculata, Curcuma longa, Zingiber officinale, Citrus limon, and Cymbopogon citratus), as well as product development in the form of nanoemulsions.

METHODS: The research was conducted by making three combinations of herbs mixtures with various compositions (Formulas A, B, and C). The combined herbs powder was then made in the form of water and ethanol extracts. The ethanol extract of each herbal combination was then made also in the form of a nanoemulsion by spontaneous emulsion.

RESULTS: The ethanol extract of each herbs combination contained higher phenolic compounds and antioxidant activity than the water extract. The nanoemulsion product of the combined herbs ethanol extract had a particle size of 21.1; 34.9; and 50.7 nm and showed high antioxidant activity.

CONCLUSION: The combined several herbs (P. urinariaA. paniculataC. longaZ. officinaleC. limon, and C. citratus) ethanol extract and its nanoemulsion products have the potential to be developed as natural antioxidants.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

World Health Organization. Coronavirus Disease (COVID-19) Pandemi. Geneva: World Health Organization; 2021. https://www.who.int/emergencies/diseases/novel-coronavirus-2019. [Last accessed on 2021 Jun 25].

Block KI, Mead MN. Immune system effects of echinacea, ginseng,and astragalus: A review. Integr Cancer Ther. 2003;2(30):247-67. https://doi.org/10.1177/1534735403256419 PMid:15035888 DOI: https://doi.org/10.1177/1534735403256419

Putri DU, Rintiswati N, Soestyo M, Haryono SM. Immune modulation properties of herbal plant leaves: Phyllanthus niruri aqueous extract on immune cells of tuberculosis patient in vitro study. Nat Prod Res 2018;32(4):463-7. https://doi.org/10.1080/14786419.2017.1311888 PMid:28391709 DOI: https://doi.org/10.1080/14786419.2017.1311888

Amirghofran Z, Hashemzadeh R, Javidnia K, Golmoghaddam H, Esmaeilbeig A. In-vitro immunomodulatory effects of extracts from three plants of the Labiatae family and isolation of the active compound(s). J Immunotoxicol. 2011;8(4):265-73. https://doi.org/10.3109/1547691X.2011.590828 PMid:21711089 DOI: https://doi.org/10.3109/1547691X.2011.590828

Ogbole OO, Akinleye1 TE, Segun PA, Faleye TC, Adeniji AJ. In vitro antiviral activity of twenty-seven medicinal plant extracts from Southwest Nigeria against three serotypes of echoviruses. Virol J. 2018;15(1):110. https://doi.org/10.1186/s12985-018-1022-74 PMid:30021589 DOI: https://doi.org/10.1186/s12985-018-1022-7

Amalraj A, Pius A, Gopi S, Gopi S. Biological activities of curcuminoids, other biomolecules from turmeric and their derivatives a review. J Tradit Complement Med. 2017;7(2):205-33. https://doi.org/10.1016/j.jtcme.2016.05.005 PMid:28417091 DOI: https://doi.org/10.1016/j.jtcme.2016.05.005

Du G, Xiao M, Yu S, Wang M, Xie Y, Sang S. Phyllanthus urinaria: A potential phytopharmacological source of natural medicine. Int J Clin Exp Med. 2018;11(7):6509-20.

Tan MC, Oyong GG, Shen CC, Consolacion Y, Ragasa CY. Chemical composition of Andrographis paniculata (Burm.f.) Nees. Res J Pharm Biol Chem Sci. 2016;7(4):2405-8.

Mao QQ, Xu XY, Cao SY, Gan RY, Corke H, Beta T, et al. Bioactive compounds and bioactivities of ginger (Zingiber officinale Roscoe). Foods. 2019;8(6):185. https://doi.org/10.3390/foods8060185 PMid:31151279 DOI: https://doi.org/10.3390/foods8060185

Bassolé IH, Lamien-Meda AL, Bayala B, Obame LC, Ilboudo AJ, Franz C, et al. Chemical composition and antimicrobial activity of Cymbopogon citratus and Cymbopogon giganteus essential oils alone and in combination. Phytomedicine. 2011;18(12):1070-4. https://doi.org/10.1016/j.phymed.2011.05.009 PMid:21665450 DOI: https://doi.org/10.1016/j.phymed.2011.05.009

Ansari SH, Islam F, Sameem M. Influence of nanotechnology on herbal drugs: A review. J Adv Pharm Technol Res. 2012;3(3):142-6. https://doi.org/10.4103/2231-4040.101006 PMid:23057000 DOI: https://doi.org/10.4103/2231-4040.101006

Ajazuddin SS. Applications of novel drug delivery system for herbal formulations. Fitoterapia. 2010;81(7):680-9. https://doi.org/10.1016/j.fitote.2010.05.001 PMid:20471457 DOI: https://doi.org/10.1016/j.fitote.2010.05.001

Harborne AJ. Phytochemical Methods a Guide to Modern Techniques of Plant Analysis. 3rd ed. Netherlands: Springer; 1998.

Hagerman A, Harvey-Mueller I, Makkar AH, Mueller IH, Makar HP. Quantification of Tannins in Tree Foliage Laboratory Manual. Vienna: FAO/IAEA; 2000.

Atun S, Arianingrum R, Cahyaningsih L, Pratiwi FA, Kusumaningrum R, Khairuddean M. Formulation and characterization of quercitrin nanoemulsion isolated from Dendropthoe falcata and its antioxidant activity test. Rasayan J Chem 2020;13(3):1347-56. https://doi.org/10.31788/RJC.2020.1335868 DOI: https://doi.org/10.31788/RJC.2020.1335868

Atun S, Dewi Y, Aznam N. Characterization of nanocurcuminoid from ethanol extract of Curcuma xanthorrhiza rhizome loaded by chitosan and alginic and its antioxidan activity test. Rasayan J Chem. 2020;13(2):817-825. https://doi.org/10.31788/RJC.2020.1325680 DOI: https://doi.org/10.31788/RJC.2020.1325680

Triantaphyllou K, Blekas G, Boskou D. Antioxidative properties of water extracts obtained from herbs of the species Lamiaceae. Int J Food Sci Nutr. 2001;52(4):313-7. https://doi.org/10.1080/09637480120057512 PMid:11474895 DOI: https://doi.org/10.1080/09637480120057512

Azman NF, Azlan A, Khoo HE, Razman MR. Antioxidant properties of fresh and frozen peels of Citrus species. Curr Res in Nutr Food Sci. 2019;7(2):331-9. https://doi.org/10.12944/CRNFSJ.7.2.03 DOI: https://doi.org/10.12944/CRNFSJ.7.2.03

Smrity SZ, Saifuddin AH, Sultana S. Stability analysis of formulated emulsion containing black cumin (Nigella sativa) oil. Am J Biomed Life Sci. 2016;4(3):49-53. https://doi.org/10.11648/j.ajbls.20160403.15 DOI: https://doi.org/10.11648/j.ajbls.20160403.15

Vlaisavljević S, Rašeta M, Berežni S, Passamonti S, Tramer F. Four selected commercial seaweeds: Biologically active compounds, antioxidant and cytotoxic properties. Int J Food Sci Nutr. 2021;72(6):757-766. https://doi.org/10.1080/09637486.2020.1866503 PMid:33386060 DOI: https://doi.org/10.1080/09637486.2020.1866503

Joshi RP, Negi G, Kumar A, Pawar YB, Munjal B, Bansal AK, et al. SNEDDS curcumin formulation leads to enhanced protection from pain and functional deficits associated with diabetic neuropathy: An insight into its mechanism for neuroprotection. Nanomed Nanotech Biol Med. 2013;9(6):776-85. https://doi.org/10.1016/j.nano.2013.01.001 PMid:23347896 DOI: https://doi.org/10.1016/j.nano.2013.01.001

Shabat SB, Yarmolinsky L, Porat D, Dahan A. Antiviral effect of phytochemicals from medicinal plants: Applications and drug delivery strategies. Drug Deliv Translat Res. 2020;10(2):354-367. https://doi.org/10.1007/s13346-019-00691-6 PMid:31788762 DOI: https://doi.org/10.1007/s13346-019-00691-6

Mukhtar M, Arshad M, Ahmad M, Pomerantzc RJ, Wigdahld B, Parveen Z. Antiviral potentials of medicinal plants. Virus Res. 2008;131(2):111-20. https://doi.org/10.1016/j.virusres.2007.09.008 PMid:17981353 DOI: https://doi.org/10.1016/j.virusres.2007.09.008

Yuliani SH. Nanoparticle as the strategy for the development of sar-cov-2 antiviral. Int J Appl Pharm. 2021;13(5):33-43. https://doi.org/10.22159/ijap.2021v13i5.42604 DOI: https://doi.org/10.22159/ijap.2021v13i5.42604

Chinthala R, Sing SS. Development and pharmacokinetics of curcumin loaded beta caroten nanopaticles in rats. Int J Appl Pharm. 2021;13(5):172-6. https://doi.org/10.22159/ijap.2021v13i5.42339 DOI: https://doi.org/10.22159/ijap.2021v13i5.42339

Downloads

Published

2022-01-11

How to Cite

1.
Atun S, Pertiwi KR, Qolbiah M, Safa S. Phytochemical Analysis Both of Water and Ethanol Extract from Some Herbs Combinations, Nanoemulsion Formulation, and Antioxidant Effects. Open Access Maced J Med Sci [Internet]. 2022 Jan. 11 [cited 2024 Nov. 19];10(A):95-100. Available from: https://oamjms.eu/index.php/mjms/article/view/7886