Evaluation the Effect of Natural Compounds: Vitamin C, Green Tea, and their Combination on Progression of Mg-63 Osteosarcoma Cell Line Cells. (An In Vitro Study)
DOI:
https://doi.org/10.3889/oamjms.2021.7894Keywords:
Mg-63 cell line, Vitamin C, Green tea polyphenols, Flow cytometry, 2,2-diphenyl-1-picryl-hydrazyl-hydrate antioxidant assay and wound healingAbstract
BACKGROUND: Osteosarcoma (OS) is considered extremely rare type of bone tumor although it is the most common type of malignant bone tumor in children with less common occurrence in elderly patients. Herbal plants and phytoconstituents are recently used in the treatment of OS to avoid the side effects of chemotherapeutic drugs.
AIM: The aims of the present study are to investigate the effect of natural compound Vitamin C, green tea, and their combination on OS cell line (Mg-63 cells) after 72 h.
MATERIAL AND METHODS: Mg-63 cells were obtained from Nawah scientific and divided to four groups: Control untreated cells, Vitamin C treated group, green tea treated group, and Vitamin C and green tea treated group (compounds combination treated group). The viability of treated cells was examined by sulforhodamine B (SRB) assay. Antioxidant 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) assay was performed to investigate the antioxidant property of Vitamin C, green tea, and their combination. Flow cytometer analysis was applied to demonstrate cell cycle analysis and apoptosis. Wound width and cell migration were calculated by wound healing assay.
RESULTS: SRB cytotoxic assay revealed that the Vitamin C, green tea, and their combination have a cytotoxic effect on MG-63 cells and Vitamin C has more cytotoxic effect than other two groups. Antioxidant DPPH assay showed that Vitamin C is more antioxidant agent than green tea and their combination on MG-63 cells. Flow cytometry assay revealed that the all-treated cells in different groups are arrested in cell cycle. Vitamin C, green tea, and their combination induced apoptosis and necrosis. Migration of MG-63 cells is inhibited after treated by Vitamin C, green tea, and their combination.
CONCLUSION: Vitamin C, green tea, and their combination have cytotoxic effect on Mg-63 cells, also induced their effects on the cell cycle distribution and apoptosis. Anti-oxidant test was applied on three drugs revealed the powerful anti-oxidant capacity of Vitamin C than green tea and their combination. At least wound healing test was applied on malignant Mg-63 cells treated with our drugs that revealed Vitamin C was more effective.Downloads
Metrics
Plum Analytics Artifact Widget Block
References
Ferlay J, Ervik M, Lam F, Colombet M, Mery L, Piñeros M, et al., editors. Global Cancer Observatory: Cancer Today. Lyon, France: International Agency for Research on Cancer; 2020. Available from: https://www.gco.iarc.fr/today [Last accessed on 2020 Nov 25].
Ferlay J, Ervik M, Lam F, Colombet M, Mery L, Piñeros M, et al. Global Cancer Observatory: Cancer Today. Lyon: International Agency for Research on Cancer; 2020. Available from: https://www.gco.iarc.fr/today [Last accessed on 2020 Nov 25].
Lindsey BA, Markel JE, Kleinerman ES. Osteosarcoma overview. Rheumatol Ther. 2017;4(1):25-43. https://doi.org/10.1007/s40744-016-0050-2 PMid:27933467 DOI: https://doi.org/10.1007/s40744-016-0050-2
Valenti MT, Zanatta M, Donatelli L, Viviano G, Cavallini C, Scupoli MT, et al. Ascorbic acid induces either differentiation or apoptosis in MG-63 osteosarcoma lineage. Anticancer Res. 2014;34(4):1617-27. PMid:24692690
Zhang J, Gao F, Yang AK, Chen WK, Chen SW, Li H, et al. Epidemiologic characteristics of oral cancer: Single-center analysis of 4097 patients from the Sun Yat-Sen University Cancer Center. Chin J Cancer. 2016;35(1):24. https://doi.org/10.1186/s40880-016-0078-2 PMid:26940066 DOI: https://doi.org/10.1186/s40880-016-0078-2
Sivaraj R, Rahman PK, Rajiv P, Narendhran S, Venckatesh R. Biosynthesis and characterization of Acalypha indica mediated copper oxide nanoparticles and evaluation of its antimicrobial and anticancer activity. Spectrochim Acta A Mol Biomol Spectrosc. 2014;129:255-8. https://doi.org/10.1016/j.saa.2014.03.027 PMid:24747845 DOI: https://doi.org/10.1016/j.saa.2014.03.027
Kasinski AL, Kelnar K, Stahlhut C, Orellana E, Zhao J, Shimer E, et al. A combinatorial microRNA therapeutics approach to suppressing non-small cell lung cancer. Oncogene. 2015;34(27):3547-55. https://doi.org/10.1038/onc.2014.282 PMid:25174400 DOI: https://doi.org/10.1038/onc.2014.282
Harris HR, Orsini N, Wolk A. Vitamin C and survival among women with breast cancer: A meta-analysis. Eur J Cancer. 2014;50(7):1223-31. https://doi.org/10.1016/j.ejca.2014.02.013 PMid:24613622 DOI: https://doi.org/10.1016/j.ejca.2014.02.013
Bedrood Z, Rameshrad M and Hosseinzadeh H. Toxicological effects of Camellia sinensis (green tea): A review. Phytother Res. 2018;32(7):1163-80. https://doi.org/10.1002/ptr.6063 PMid:29575316 DOI: https://doi.org/10.1002/ptr.6063
Fujiki H, Sueoka E, Watanabe T, Suganuma M. Synergistic enhancement of anticancer effects on numerous human cancer cell lines treated with the combination of EGCG, other green tea catechins, and anticancer compounds. J Cancer Res Clin Oncol. 2015;141(9):1511-22. https://doi.org/10.1007/s00432-014-1899-5 PMid:25544670 DOI: https://doi.org/10.1007/s00432-014-1899-5
Fujiki H, Watanabe T, Sueoka E, Rawangkan A, Suganuma M. Cancer prevention with green tea and its principal constituent, EGCG: From early investigations to current focus on human cancer stem cells. Mol Cells. 2018;41(2):73-82. https://doi.org/10.14348/molcells.2018.2227 PMid:29429153
Toden S, Okugawa Y, Jascur T, Wodarz D, Komarova NL, Buhrmann C, et al. Curcumin mediates chemosensitization to 5-fluorouracil through miRNA-induced suppression of epithelial-to-mesenchymal transition in chemoresistant colorectal cancer. Carcinogenesis. 2015;36(3):355-67. https://doi.org/10.1093/carcin/bgv006 PMid:25653233 DOI: https://doi.org/10.1093/carcin/bgv006
Sauter ER. Cancer prevention and treatment using combination therapy with natural compounds. Expert Rev Clin Pharmacol. 2020;13(3):265-85. https://doi.org/10.1080/17512433.2020.173 8218 PMid:32154753 DOI: https://doi.org/10.1080/17512433.2020.1738218
Majchrzak D, Mitter S, Elmadfa I. The effect of ascorbic acid on total antioxidant activity of black and green teas. Food Chem. 2004;88(3):447-51. https://doi.org/10.1016/j.foodchem.2004.01.058 DOI: https://doi.org/10.1016/j.foodchem.2004.01.058
Skehan P, Storeng R, Scudiero D, Monks A, McMahon J, Vistica D, et al. New colorimetric cytotoxicity assay for anticancer-drug screening. J Natl Cancer Inst. 1990;82(13):1107-12. https://doi.org/10.1093/jnci/82.13.1107 PMid:2359136 DOI: https://doi.org/10.1093/jnci/82.13.1107
Allam RM, Al-Abd AM, Khedr A, Sharaf OA, Nofal SM, Khalifa AE, et al. Fingolimod interrupts the cross talk between estrogen metabolism and sphingolipid metabolism within prostate cancer cells. Toxicol Lett. 2018;291:77-85. https://doi.org/10.1016/j.toxlet.2018.04.008 PMid:29654831 DOI: https://doi.org/10.1016/j.toxlet.2018.04.008
Boly R, Lamkami T, Lompo M, Dubois J, Guissou I. DPPH free radical scavenging activity of two extracts from Agelanthus dodoneifolius (Loranthaceae) leaves. Int J Toxicol Pharm Res. 2016;8(1):29-34.
Chen Z, Bertin R, Froldi G. EC50 estimation of antioxidant activity in DPPH assay using several statistical programs. Food Chem. 2013;138(1):414-20. https://doi.org/10.1016/j.foodchem.2012.11.001 PMid:23265506 DOI: https://doi.org/10.1016/j.foodchem.2012.11.001
Fekry MI, Ezzat SM, Salama MM, Alshehri OY, Al-Abd AM. Bioactive glycoalkaloides isolated from Solanum melongena fruit peels with potential anticancer properties against hepatocellular carcinoma cells. Sci Rep. 2019;9(1):1746. https://doi.org/10.1038/s41598-018-36089-6 PMid:30741973 DOI: https://doi.org/10.1038/s41598-018-36089-6
Bashmail HA, Alamoudi AA, Noorwali A, Hegazy GA, AJabnoor G, Choudhry H, et al. Thymoquinone synergizes gemcitabine anti-breast cancer activity via modulating its apoptotic and autophagic activities. Sci Rep. 2018;8(1):11674. https://doi.org/10.1038/s41598-018-30046-z PMid:30076320 DOI: https://doi.org/10.1038/s41598-018-30046-z
Baghdadi MA, Al-Abbasi FA, El-Halawany AM, Aseeri AH, Al-Abd AM. Anticancer profiling for coumarins and related O-naphthoquinones from Mansonia gagei against solid tumor cells in vitro. Molecules. 2018;23(5):1020. https://doi.org/10.3390/molecules23051020 PMid:29701706 DOI: https://doi.org/10.3390/molecules23051020
Alaufi OM, Noorwali A, Zahran F, Al-Abd AM, Al-Attas S. Cytotoxicity of thymoquinone alone or in combination with cisplatin (CDDP) against oral squamous cell carcinoma in vitro. Sci Rep. 2017;7(1):13131. https://doi.org/10.1038/s41598-017-13357-5 PMid:29030590 DOI: https://doi.org/10.1038/s41598-017-13357-5
Mohamed GA, Al-Abd AM, El-Halawany AM, Abdallah HM, Ibrahim SR. New xanthones and cytotoxic constituents from Garcinia mangostana fruit hulls against human hepatocellular, breast, and colorectal cancer cell lines. J Ethnopharmacol. 2017;198:302-12. https://doi.org/10.1016/j.jep.2017.01.030 PMid:28108382 DOI: https://doi.org/10.1016/j.jep.2017.01.030
Main KA, Mikelis CM, Doçi CL. In vitro wound healing assays to investigate epidermal migration. In: Epidermal Cells. New York: Humana; 2019. p. 147-54. DOI: https://doi.org/10.1007/7651_2019_235
Martinotti S, Ranzato E. Scratch Wound Healing Assay. In: Turksen K, editor. Epidermal Cells. Methods in Molecular Biology. Vol. 2109. New York: Humana; 2019. DOI: https://doi.org/10.1007/7651_2019_259
Lie MR, van der Giessen J, Fuhler GM, de Lima A, Peppelenbosch MP, van der Ent C, et al. Low dose Naltrexone for induction of remission in inflammatory bowel disease patients. J Transl Med. 2018;16(1):55. https://doi.org/10.1186/s12967-018-1427-5 PMid:29523156 DOI: https://doi.org/10.1186/s12967-018-1427-5
Rueden CT, Schindelin J, Hiner MC, DeZonia BE, Walter AE, Arena ET, et al. ImageJ2: ImageJ for the next generation of scientific image data. BMC Bioinformatics. 2017;18(1):526. https://doi.org/10.1186/s12859-017-1934-z PMid:29187165 DOI: https://doi.org/10.1186/s12859-017-1934-z
Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. Fiji: An open-source platform for biological-image analysis. Nat Methods. 2012;9(7):676-82. https://doi.org/10.1038/nmeth.2019 PMid:22743772 DOI: https://doi.org/10.1038/nmeth.2019
Rodriguez LG, Wu X, Guan JL. Wound-healing assay. In: Cell Migration. New Jersey, United States: Humana Press; 2005. p. 23-9.
Ngo B, van Riper JM, Cantley LC, Yun J. Targeting cancer vulnerabilities with high-dose Vitamin C. Nat Rev Cancer. 2019;19(5):271-82. https://doi.org/10.1038/s41568-019-0135-7 PMid:30967651 DOI: https://doi.org/10.1038/s41568-019-0135-7
Ni J, Guo X, Wang H, Zhou T, Wang X. Differences in the effects of EGCG on chromosomal stability and cell growth between normal and colon cancer cells. Molecules. 2018;23(4):788. https://doi.org/10.3390/molecules23040788 PMid:29596305 DOI: https://doi.org/10.3390/molecules23040788
Cimmino L, Neel BG, Aifantis I. Vitamin C in stem cell reprogramming and cancer. Trends Cell Biol. 2018;28(9):698-708. https://doi.org/10.1016/j.tcb.2018.04.001 PMid:29724526 DOI: https://doi.org/10.1016/j.tcb.2018.04.001
Intra J, Kuo SM. Physiological levels of tea catechins increase cellular lipid antioxidant activity of Vitamin C and Vitamin E in human intestinal caco-2 cells. Chem Biol Interact. 2007;169(2):91-9. https://doi.org/10.1016/j.cbi.2007.05.007 PMid:17603031 DOI: https://doi.org/10.1016/j.cbi.2007.05.007
Zhou J, Chen C, Chen X, Fei Y, Jiang L, Wang G. Vitamin C promotes apoptosis and cell cycle arrest in oral squamous cell carcinoma. Front Oncol. 2020;10:976. https://doi.org/10.3389/fonc.2020.00976 PMid:32587830 DOI: https://doi.org/10.3389/fonc.2020.00976
Gupta S, Ahmad N, Nieminen AL, Mukhtar H. Growth inhibition, cell-cycle dysregulation, and induction of apoptosis by green tea constituent (-)-epigallocatechin-3-gallate in androgen-sensitive and androgen-insensitive human prostate carcinoma cells. Toxicol Appl Pharmacol. 2000;164(1):82-90. https://doi.org/10.1006/taap.1999.8885 PMid:10739747 DOI: https://doi.org/10.1006/taap.1999.8885
Umeda D, Yano S, Yamada K, Tachibana H. Involvement of 67-kDa laminin receptor-mediated myosin phosphatase activation in antiproliferative effect of epigallocatechin-3-O-gallate at a physiological concentration on Caco-2 colon cancer cells. Biochem Biophys Res Commun. 2008;371(1):172-6. https://doi.org/10.1016/j.bbrc.2008.04.041 PMid:18423375 DOI: https://doi.org/10.1016/j.bbrc.2008.04.041
Gupta S, Hussain T, Mukhtar H. Molecular pathway for (-)-epigallocatechin-3-gallate-induced cell cycle arrest and apoptosis of human prostate carcinoma cells. Arch Biochem Biophys. 2003;410(1):177-85. https://doi.org/10.1016/s0003-9861(02)00668-9 PMid:12559991 DOI: https://doi.org/10.1016/S0003-9861(02)00668-9
Liu L, Ju Y, Wang J, Zhou R. Epigallocatechin-3- gallate promotes apoptosis and reversal of multidrug resistance in esophageal cancer cells. Pathol Res Pract. 2017;213(10):1242-50. https://doi.org/10.1016/j.prp.2017.09.006 PMid:28964574 DOI: https://doi.org/10.1016/j.prp.2017.09.006
Downloads
Published
How to Cite
License
Copyright (c) 2021 Hiam Rifaat Hussien Mohammed, Amr Helmy Moustafa El Bolok, Sherif Farouq Elgayar, Maii Ibrahim Ali Sholqamy (Author)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
http://creativecommons.org/licenses/by-nc/4.0