Role of Glutathione S-transferase Mu 1 and Glutathione S-transferases Theta 1 Polymorphism in the Risk of Developing Type 2 Diabetes Mellitus at Universitas Sumatera Utara Hospital, Medan
DOI:
https://doi.org/10.3889/oamjms.2021.7904Keywords:
Polymorphism, Glutathione S-transferase mu 1, Glutathione S-transferases theta 1, Type 2 diabetes mellitusAbstract
BACKGROUND: Diabetes mellitus is associated with an increased production of reactive oxygen species (ROS) and a reduction in antioxidant defense. Glutathione S-transferases (GSTs) is group of multifunction antioxidant enzyme can be used as important biomarkers for DM.. GSTM1, T1 genes variant polymorphism result in decreased or loss of enzyme activity.
AIM: The study aimed to evaluate the role of GSTM1 and GSTT1 gene polymorphism in the risk of developing T2DM.
METHODS: GSTM1 and GSTT1 polymorphisms were genotyped in 87 T2DM patients and 87 healthy control group to analyze their association with T2DM susceptibility by using multiplex Polymerase Chain Reaction (PCR). PCR products were electrophoresed using agarose 2%. Odds ratio (OR) with 95% confidence interval (CI) and P value were calculated using SPSS software (version 21.0).
RESULTS: The genotype distribution of GSTM1 and GSTT1 were not different between T2DM patients and healthy control group (p = 0.542, OR= 0.780, CI 95%=0.350-1.737 and p=0.879, OR=1.047, CI 95%=0.577-1.903). The genotype distribution of combination of GSTM1 and GSTT1 were also not not different between T2DM patients and healthy control group (p = 0.640, OR= 0.640, CI 95%=0.224-1.83 and p=0.551, OR=0.721, CI 95%=0.245-2.120.
CONCLUSION: In summary, this study showed that GSTT1 null, GSTM1 null, the combination of GSTM1 null and GSTT1 null genotype or combination of GSTM1 null and GSTT1 positive (or contrary) did not have any risk of developing T2DM at Universitas Sumatera Utara Hospital, Medan.
Downloads
Metrics
Plum Analytics Artifact Widget Block
References
Powers AC. Diabetes mellitus. In: Longo DL, Kasper DL, Jameson JL, Fauci AS, Hauser SL, Loscalzo J. Harrison’s Endocrinology. 3rd ed. United States: McGraw Hill Education; 2013. p. 261-307.
International Diabetes Federation. IDF Diabetes Atlas. 9th ed. Brussels, Belgium: International Diabetes Federation; 2019. Available from: https://diabetesatlas.org/upload/resources/material/20200302_133351_IDFATLAS9e-final-web.pdf [Last accessed on 2021 Sep 30].
Kementerian Kesehatan, Badan Penelitian dan Pengembangan Kesehatan. Hasil Utama Riskesdas. (Ministry of Health, Health Research and Development. Main Results of Riskesdas); 2018. Available from: http://dinkes.babelprov.go.id/sites/default/files/dokumen/bank_data/20181228%20-%20Laporan%20Riskesdas%202018%20Nasional-1.pdf [Last accessed on 2021 Sep 01].
Phaniendra A, Jestadi DB, Periyasamy L. Free radicals: Properties, sources, targets, and their implication in various diseases. Indian J Clin Biochem. 2015;30(1):11-26. http://doi.org/10.1007/s12291-014-0446-0 PMid:25646037 DOI: https://doi.org/10.1007/s12291-014-0446-0
Birben E, Sahiner UM, Sackesen C, Erzurum S, Kalayci O. Oxidative stress and antioxidant defense. World Allergy Organ J. 2012;5(1):9-19. http://doi.org/10.1097/WOX.0b013e3182439613 PMid:23268465 DOI: https://doi.org/10.1097/WOX.0b013e3182439613
Banerjee M, Vats P. Redox biology reactive metabolites and antioxidant gene polymorphisms in Type 2 diabetes mellitus. Redox Biol. 2014;2:170-7. http://doi.org/10.1016/j.redox.2013.12.001 PMid:25460725 DOI: https://doi.org/10.1016/j.redox.2013.12.001
Josephy PD. Genetic variations in human glutathione transferase enzymes: Significance for pharmacology and toxicology. Hum Genomics Proteomics. 2010;2010:876940. http://doi.org/10.4061/2010/876940 PMid:20981235 DOI: https://doi.org/10.4061/2010/876940
Suthar PC. Glutathione S-transferases: A brief on classification and GSTM1-T1 activity. Int J Pharm Sci Res. 2017;8(3):1023-7. http://doi.org/10.13040/IJPSR.0975-8232.8(3).1023-27 DOI: https://doi.org/10.13040/IJPSR.0975-8232.8(3).1023-27
Datta SK, Kumar V, Pathak R, Tripathi AK, Ahmed RS, Kalra OP, et al. Association of glutathione S-transferase M1 and T1 gene polymorphism with oxidative stress in diabetic and nondiabetic chronic kidney disease. Ren Fail. 2010;32(10):1189-95. http://doi.org/10.3109/0886022X.2010.517348 PMid:20954980 DOI: https://doi.org/10.3109/0886022X.2010.517348
Cao T, Xu N, Wang Z, Liu H. Effects of glutathione S-transferase gene polymorphisms and antioxidant capacity per unit albumin on the pathogenesis of chronic obstructive pulmonary disease. Oxid Med Cell Longev. 2017;2017:6232397. http://doi.org/10.1155/2017/6232397 DOI: https://doi.org/10.1155/2017/6232397
Dastjerdi AH, Behboudi H, Kianmehr Z, Taravati A, Naghizadeh MM, Ardestani SK, et al. Association of glutathione S-transferase polymorphisms with the severity of mustard lung. Bioimpacts. 2017;7(4):255-61. http://doi.org/10.15171/bi.2017.30 PMid:29435433 DOI: https://doi.org/10.15171/bi.2017.30
Uddin MM, Ahmed MU, Islam MS, Islam MS, Sayeed MS, Kabir Y, et al. Genetic polymorphisms of GSTM1, GSTP1 and GSTT1 genes and lung cancer susceptibility in the Bangladeshi population. Asian Pac J Trop Biomed. 2014;4(12):982-9. http://doi.org/10.12980/APJTB.4.2014APJTB-2014-0476 PMid:26529288 DOI: https://doi.org/10.12980/APJTB.4.2014APJTB-2014-0476
Yaghmaei B, Yaghmaei K, Jafarian M, Golmohammadi S. Genetic polymorphisms of glutathione S-transferase Mu 1, glutathione S-transferase theta 1, and glutathione S-transferase P1 in oral squamous cell carcinoma: A case-control study in Iranian population. J Orofac Sci. 2015;7(2):108-12. http://doi.org/10.4103/0975-8844.169762 DOI: https://doi.org/10.4103/0975-8844.169762
Amer MA, Ghattas MH, Abo-Elmatty DM, Abou-El-Ela SH. Influence of glutathione S-transferase polymorphisms on Type-2 diabetes mellitus risk. Genet Mol Res. 2011;10(4):3722-30. http://doi.org/10.1007/s11033-013-2833-7 PMid:22058002 DOI: https://doi.org/10.4238/2011.October.31.14
Rasheed MN, Hasan OM, Mahmood AS. Association of glutathione S-transferase (GSTM1, T1) gene polymorphisms with Type 2 diabetes mellitus (T2DM) in the Iraqi patients. Iraqi J Biotech. 2015;14(1):176-81. http://doi.org/10.4103/0022-3859.68633 PMid:20739761 DOI: https://doi.org/10.4103/0022-3859.68633
Syarifah S, Widyawati T, Hasni H, Sari MI, Rusdiana R, Hamdi T. The relation of haplotype ATP-binding cassette B1 (ABCB1) and gluthation S-transferase P1 (GSTP1) A313G gene with haematological toxicity in Indonesian breast cancer patients receiving chemotherapy. Bangladesh J Med 2021;2021:36. http://doi.org/10.5001/omj.2022.36 DOI: https://doi.org/10.5001/omj.2022.36
Farhat F, Sari MI, Chrestella J, Syari RP. The Association of GSTT1 Polymorphism with Total Antioxidant Status of Nasopharyngeal Carcinoma Patients. In: AIP Conference Proceedings. Vol. 23. AIP Publishing LLC; 2021. p. 120002. http://doi.org/10.1063/5.0045622 DOI: https://doi.org/10.1063/5.0045622
Farhat F, Sari MI, Chrestella J, Syari RP. The Chemical Changes in the Total Antioxidant Status and Biological Activity of GSTP1 Polymorphism on Nasopharyngeal Carcinoma Patients. Vol. 713. In: IOP Conference Series: Earth and Environmental Science. 2021. p. 012049. http://doi.org/10.1088/1755-1315/713/1/012049 DOI: https://doi.org/10.1088/1755-1315/713/1/012049
Tantular R, Sri Muktiati N, Dwi Pratiwi S, Setijowati N. Glutathione S-Transferase M1 and T1 Polymorphisms Prevalence in Lung Cancer Patients in Malang, Indonesia. Respirology 2017; 22:16-16. http://doi.org/10.1111/resp.13206_28 DOI: https://doi.org/10.1111/resp.13206_28
Oakley A. Glutathione transferases: A structural perspective. Drug Metab Rev. 2011;43(2):138-151. http://doi.org/10.3109/03602532.2011.558093 PMid:21428697 DOI: https://doi.org/10.3109/03602532.2011.558093
Song Z, Shao C, Feng C, Lu Y, Gao Y, Dong C. Association of glutathione S-transferase T1, M1, and P1 polymorphisms in the breast cancer risk: A meta-analysis. Ther Clin Risk Manag. 2016;12:763-9. http://doi.org/10.2147/tcrm.s104339 PMid:27274261 DOI: https://doi.org/10.2147/TCRM.S104339
Zhang J, Liu H, Yan H, Huang G, Wang B. Null genotypes of GSTM1 and GSTT1 contribute to increased risk of diabetes mellitus: A meta-analysis. Gene. 2013;518(2):405-11. http://doi.org/10.1016/j.gene.2012.12.086 PMid:23296061 DOI: https://doi.org/10.1016/j.gene.2012.12.086
Stoian A, Banescu C, Balasa RI, Motataianu A, Stoian M, Moldovan VG, et al. Influence of GSTM1, GSTT1, and GSTP1 polymorphisms on Type 2 diabetes mellitus and diabetic sensorimotor peripheral neuropathy risk. Dis Markers. 2015;2015:638693. http://doi.org/10.1155/2015/638693 PMid:26435566 DOI: https://doi.org/10.1155/2015/638693
Zaki MA, Moghazy TF, El-Deeb MM, Mohamed AH, Mohamed NA. Glutathione S-transferase M1, T1 and P1 gene polymorphisms and the risk of developing Type 2 diabetes mellitus in Egyptian diabetic patients with and without diabetic vascular complications. Alexandria J Med. 2015;51(1):73-82. http://doi.org/10.1016/j.ajme.2014.03.003 DOI: https://doi.org/10.1016/j.ajme.2014.03.003
Vats P, Chandra H, Banerjee M. Glutathione S-transferase and catalase gene polymorphisms with Type 2 diabetes mellitus. Dis Mol Med. 2013;1(3):46. DOI: https://doi.org/10.5455/dmm.20131027101207
Venter JC, Smith HO, Adams MD. Citation classic the sequence of the human genome. Clin Chem. 2015;61(9):1207-8. http://doi.org/10.1373/clinchem.2014.237016 PMid:26185218 DOI: https://doi.org/10.1373/clinchem.2014.237016
Karki R, Pandya D, Elston RC, Ferlini C. Defining “mutation” and “polymorphism” in the era of personal genomics. BMC Med Genomics. 2015;8(1):1-7. http://doi.org/10.1186/s12920-015-0115-z DOI: https://doi.org/10.1186/s12920-015-0115-z
Ismail S, Essawi M. Genetic polymorphism studies in humans. Middle East J Med Genet 2012;1(2):57-63. http://doi.org/10.1097/01.MXE.0000415225.85003.47 DOI: https://doi.org/10.1097/01.MXE.0000415225.85003.47
Moasser E, Kazemi-Nezhad SR, Saadat M, Azarpira N. Study of the Association between glutathione S-transferase (GSTM1, GSTT1, GSTP1) Polymorphisms with Type II diabetes mellitus in Southern of Iran. Mol Biol Rep 2012;39(12):10187-92. http://doi.org/10.1007/s11033-012-1893-4 PMid:23014993 DOI: https://doi.org/10.1007/s11033-012-1893-4
Tang ST, Wang CJ, Tang HQ, Zhang Q, Wang Y. Evaluation of glutathione S-transferase genetic variants affecting Type 2 diabetes susceptibility: A meta-analysis. Gene. 2013;530(2):301-8. http://doi.org/10.1016/j.gene.2013.08.043 PMid:24008019 DOI: https://doi.org/10.1016/j.gene.2013.08.043
Volpe CM, Villar-Delfino PH, Dos Anjos PM, Nogueira- Machado JA. Cellular death, reactive oxygen species (ROS) and diabetic complications review-article. Cell Death Dis. 2018;9(2):119. http://doi.org/10.1038/s41419-017-0135-z PMid:29371661 DOI: https://doi.org/10.1038/s41419-017-0135-z
Downloads
Published
How to Cite
License
Copyright (c) 2021 Tala ZZ, Mutiara Indah Sari (Author)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
http://creativecommons.org/licenses/by-nc/4.0