The Effect of Various Training on the Expression of the 5’amp-Activated Protein Kinase Α2 and Glucose Transporter - 4 in Type-2 Diabetes Mellitus Rat


  • Rahmi Rahmi Department of Biomedical Sciences, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
  • Yetty Machrina Department of Physiology, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
  • Zulham Yamamoto Department of Histology, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia



Aerobic training, AMPK, Type 2 diabetes mellitus


BACKGROUND: Exercise is the main pillar in Type 2 Diabetes Mellitus (T2DM) management. The mechanism of glucose uptake mediated by exercise is different from insulin, and this mechanism is not disturbed in T2DM. One of the mechanisms is through the activation of 5’AMP-activated protein kinase (AMPK). AMPK also regulates the glucose transporter 4 (GLUT4) expression. Effect various types of exercise to AMPK α2 and GLUT-4 of the skeletal muscle still limited.

AIM: This study aims to determine the effect of various physical training on the expression of Ampk α2 and Glut 4 in skeletal muscle of T2DM rats.

METHODS: This study used stored skeletal muscles of 25 T2DM Wistar rats. Previously, the rats were divided into groups of K1 (control, not given exercise), K2 (moderate continuous training), K3 (severe continuous training), K4 (slow interval training), and K5 (fast interval training). Running on a treadmill frequency 3 times a week for 8 weeks. The relative expression of Ampk α2 and Glut 4 were assessed using Real Time-PCR and were compared among the groups using the Livak formula.

RESULTS: Moderate intensity continuous training increased Ampk α2 and Glut 4 expression by 1.45 and 2.39 times, respectively. Severe intensity continuous training increased the expression of Ampk α2 and Glut 4 by 1.55 and 2.56 times, respectively. Slow interval training increased the expression of Ampk α2 and Glut 4 by 4.41 and 3.76 times, respectively. The expression of Ampk α2 and Glut4 in fast interval training was 4.56 and 4.79 times more than control.

CONCLUSION: Continuous and interval training increase Ampk α2 and Glut 4 expression. The fast interval training showed the highest expression of Ampk α2 and Glut 4.


Download data is not yet available.


Metrics Loading ...

Plum Analytics Artifact Widget Block


Saeedi P, Petersohn I, Salpea P, Malanda B, Karuranga S, Unwin N, et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res Clin Pract. 2019;157:107843. PMid:31518657 DOI:

Ditjen Kesehatan Masyarakat Kementrian Kesehatan. Kementrian Kesehatan Republik Indonesia, Hasil Riskesdas Tahun 2018; 2020. Available from: [Last accessed on 2020 Nov 20].

Neill HM. AMPK and exercise: Glucose uptake and insulin sensitivity. Diabetes Metab J. 2013;37(1):1-21. PMid:23441028 DOI:

Sharabi K, Tavares CD, Rines AK, Puigserver P. Molecular pathophysiology of hepatic glucose production. Mol Aspects Med. 2015;46:21-33. PMid:26549348 DOI:

PERKENI. In: Soelistijo SA, Novida H, editors. Konsensus Pengelolaan dan Pencegahan Diabetes Melitus Tipe 2 di Indonesia 2015. Jakarta: PB PERKENI; 2015. p. 10-61.

Richter EA, Hargreaves M. Exercise, GLUT4, and skeletal muscle glucose uptake. Physiol Rev. 2013;93(3):993-1017. PMid:23899560 DOI:

Stanford KI, Goodyear LJ. Exercise and Type 2 diabetes: Molecular mechanisms regulating glucose uptake in skeletal muscle. Adv Physiol Educ. 2014;38:308-14. PMid:25434013 DOI:

Yan Y, Zhou XE, Xu HE, Melcher K. Structure and physiological regulation of AMPK. Int J Mol Sci. 2018;19(11):3534. PMid:30423971 DOI:

Richter EA, Ruderman NB. AMPK and the biochemistry of exercise: Implications for human health and disease. Biochem J. 2010;418(2):261-75. PMid:19196246 DOI:

Pereira RM, Sanchez A. Molecular mechanisms of glucose uptake in skeletal muscle at rest and in response to exercise. Moritz Rio Carlo. 2017;23:1-8. DOI:

Mcgee SL, van Denderen BJ, Howlett KF, Mollica J, Schertzer JD, Kemp BE, et al. AMP-activated protein kinase regulates GLUT4 transcription by phosphorylating histone deacetylase 5. Clin Exp Pharmacol Physiol. 2008;57:860-7. DOI:

Hussey SE, McGee SL, Garnham A, Wentworth JM, Jeukendrup AE, Hargreaves M. Research letter in patients with Type 2 diabetes research letter. Diabetes Obes Metab. 2011;13(10):959-62. PMid:21615668 DOI:

Cao S, Li B, Yi X, Chang B, Zhu B, Lian Z, et al. Effects of exercise on AMPK signaling and downstream components to PI3K in rat with Type 2 diabetes. PLoS One. 2012;7(12):e51709. PMid:23272147 DOI:

Hansen JS, Zhao X, Irmler M, Liu X, Hoene M, Scheler M, et al. Type 2 diabetes alters metabolic and transcriptional signatures of glucose and amino acid metabolism during exercise and recovery. Diabetologia. 2015;58(8):1845-54. DOI:

Lantier L, Fentz J, Mounier R, Leclerc J, Treebak JT, Pehmøller C, et al. AMPK controls exercise endurance, mitochondrial oxidative capacity, and skeletal muscle integrity. FASEB J. 2014;28(7):3211-24. PMid:24652947 DOI:

Jørgensen SB, Jensen TE, Richter EA. Role of AMPK in skeletal muscle gene adaptation in relation to exercise. Appl Physiol Nutr Metab. 2007;32(5):904-11. PMid:18059615 DOI:

Gong H, Xie J, Zhang N, Yao L, Zhang Y. MEF2A binding to the Glut4 promoter occurs via an AMPKα 2-dependent mechanism. Med Sci Sports Exerc. 2011;43(8):1441-50. PMid:21233771 DOI:

Francois ME, Little JP. Effectiveness and safety of high-intensity interval training in patients with Type 2 diabetes. Diabetes Spectr. 2015;28(1):39-44. PMid:25717277 DOI:

American Diabetes Association. Lifestyle Management: Standards of Medical Care in Diabetes 2019. Diabetes Care. 2019;42:46-60. DOI:

Spanoudaki S. Interval versus continuous training. J Sports Med Doping Stud. 2011;1(1):4172. DOI:

Mitranun W, Deerochanawong C, Tanaka H, Suksom D. Continuous vs interval training on glycemic control and macro- and microvascular reactivity in Type 2 diabetic patients. Scand J Med Sci Sport. 2014;24(2):69-76. PMid:24102912 DOI:

Álvarez C, Ramirez-campillo R, Alvarez C, Mancilla R, Ciolac EG. Low-volume high-intensity interval training as a therapy for Type 2 diabetes. Int J Sport Med. 2016;3:1-8. PMid:27259099 DOI:

De Nardi AT, Tolves T, Lenzi TL, Signori LU, da Silva AM. High-intensity interval training versus continuous training on physiological and metabolic variables in prediabetes and Type 2 diabetes: A meta-analysis. Diabetes Res Clin Pract. 2018;137:149-59. PMid:29329778 DOI:

Machrina Y, Damanik HA, Purba A, Lindarto D. Effect various type of exercise to Insr gene expression, skeletal muscle insulin receptor and insulin resistance on diabetes mellitus type-2 model rats. Int J Health Sci. 2018;6(4):50-6.

Zhang M, Lv XY, Li J, Xu ZG, Chen L. The characterization of high-fat diet and multiple low-dose streptozotocin induced Type 2 diabetes rat model. Exp Diabetes Res. 2008;2008:704045. PMid:19132099 DOI:

Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method. Methods. 2001;25(4):402-8. PMid:11846609 DOI:

Brandt N, de Bock K, Richter EA, Hespel P. Cafeteria diet-induced insulin resistance is not associated with decreased insulin signaling or AMPK activity and is alleviated by physical training in rats. Am J Physiol Endocrinol Metab. 2010;299(2):E215-24. PMid:20484011 DOI:

Carling D, Mayer FV, Sanders MJ, Gamblin SJ. AMPK-activated protein kinase: Nature’s energy sensor. Nat Chem Biol. 2011;7(8):512-8. PMid:21769098 DOI:

Viollet B, Foretz M, Guigas B, Horman S, Dentin R, Bertrand L, et al. Activation of AMP-activated protein kinase in the liver: A new strategy for the management of metabolic hepatic disorders. J Physiol. 2006;574(1):41-53. DOI:

Machrina Y, Pane YS, Lindarto D. The expression of liver metabolic enzymes ampkα1, ampkα2, and pgc-1α due to exercise in Type-2 diabetes mellitus rat model. Open Access Maced J Med Sci. 2020;8:629-32. DOI:

Thomson DM. The role of AMPK in the regulation of skeletal muscle size, hypertrophy, and regeneration. Int J Mol Sci. 2018;19(10):3125. PMid:30314396 DOI:

Torma F, Gombos Z, Jokai M, Takeda M, Mimura T, Radak Z. High intensity interval training and molecular adaptive response of skeletal muscle. Sport Med Health Sci. 2019;1(1):24-32. DOI:

Combes A, Dekerle J, Webborn N, Watt P, Bougault V, Daussin FN. Exercise-induced metabolic fluctuations influence AMPK, p38-MAPK and CaMKII phosphorylation in human skeletal muscle. Physiol Rep. 2015;3(9):e12462. PMid:26359238 DOI:

DeFronzo RA, Tripathy D. Skeletal muscle insulin resistance is the primary defect in Type 2 diabetes. Diabetes Care. 2009;32 Suppl 2:S157-63. PMid:19875544 DOI:

Gutierrez-Rodelo C, Roura-Guiberna A, Olivares-Reyes JA. Molecular mechanisms of insulin resistance: An update. Gac Med Mex. 2017;153:197-209. PMid:28474708

Lehnen AM. Changes in the GLUT4 expression by acute exercise, exercise training and detraining in experimental models. J Diabetes Metab. 2013;1(10):1-8. DOI:

Ojuka EO, Goyaram V, Smith JA. The role of CaMKII in regulating GLUT4 expression in skeletal muscle. Am J Physiol Endocrinol Metab. 2012;303(3):322-31. PMid:22496345 DOI:

Ling C, Roon T, Nitert MD. Epigenetics and Type-2 Diabetes in Epigenetics Aspect of Chronic Diseases. Berlin, Germany: Springer; 2011. p. 135-45. DOI:

Koh JH, Hancock CR, Han DH, Holloszy JO, Nair KS, Dasari S. AMPK and PPARβ positive feedback loop regulates endurance exercise training-mediated GLUT4 expression in skeletal muscle. Am J Physiol Endocrinol Metab. 2019;316(5):E931-9. PMid:30888859 DOI:

Machrina Y, Purba A, Lindarto D, Maskoen AM. Exercise intensity alter insulin receptor gene expression in diabetic Type-2 rat model. Open Access Maced J Med Sci. 2019;7(20):3370-5. PMid:32002053 DOI:




How to Cite

Rahmi R, Machrina Y, Yamamoto Z. The Effect of Various Training on the Expression of the 5’amp-Activated Protein Kinase Α2 and Glucose Transporter - 4 in Type-2 Diabetes Mellitus Rat. Open Access Maced J Med Sci [Internet]. 2022 Jan. 28 [cited 2024 Apr. 18];10(A):1-5. Available from:



Sports Medicine