Multicomponent Crystal of Trimethoprim and Citric Acid: Solid State Characterization and Dissolution Rate Studies


  • Salman Umar Department of Pharmaceutics, Faculty of Pharmacy, Universitas Andalas, Padang, Indonesia
  • Rido Farnandi Department of Pharmaceutics, Faculty of Pharmacy, Universitas Andalas, Padang, Indonesia
  • Hulwa Salsabila Department of Pharmaceutics, Faculty of Pharmacy, Universitas Andalas, Padang, Indonesia
  • Erizal Zaini Department of Pharmaceutics, Faculty of Pharmacy, Universitas Andalas, Padang, Indonesia



Trimethoprim, Citric acid, Multicomponent crystals, Solvent evaporation, Solubility, Dissolution rate


BACKGROUND: Trimethoprim is a broad spectrum antimicrobial agent with low solubility in water which causes low bioavailability in systemic circulation.

AIM: The purpose of this study was to prepare multicomponent crystals of trimethoprim and citric acid to increase the solubility and dissolution rate of trimethoprim.

MATERIALS AND METHODS: Multicomponent crystals were prepared by solvent evaporation method. Characterizations of multicomponent crystalline solid phase properties were carried out by powder X-ray diffraction (PXRD) analysis, differential scanning calorimetry (DSC), FT-IR spectroscopy, scanning electron microscopy (SEM). Solubility and dissolution rate tests were carried out in aqueous medium.

RESULTS: The PXRD characterization results showed a new X-ray diffraction pattern in the multicomponent crystal phase. DSC analysis showed the formation of a new endothermic peak. This indicates the formation of a multicomponent crystal phase between trimethoprim and citric acid. The results of the SEM analysis indicate the formation of a new crystal habit. Solubility of multi-component crystal phase of trimethoprim increased 7 times compared to intact trimethoprim. The dissolution of trimethoprim and multicomponent crystals in 0.1 N HCl medium at 60 minutes was 56.36% and 95.57% and CO2-free distilled water medium was 43.03% and 88.26%, respectively.

CONCLUSIONS: From the results of the study, it can be concluded that the multicomponent phase of trimethoprim crystals with citric acid successfully increase the solubility and dissolution rate of trimethoprim significantly.


Download data is not yet available.


Metrics Loading ...

Plum Analytics Artifact Widget Block


Kawabata Y, Wada K, Nakatani M, Yamada S, Onoue S. Formulation design for poorly water-soluble drugs based on biopharmaceutics classification system: Basic approaches and practical applications. Int J Pharm. 2011;420(1):1-10. PMid:21884771 DOI:

Li N, Zhang YH, Wu YN, Xiong XL, Zhang YH. Inclusion complex of trimethoprim with beta-cyclodextrin. J Pharm Biomed Anal. 2005;39(3-4):824-9. PMid:16011886 DOI:

Hawser S, Lociuro S, Islam K. Dihydrofolate reductase inhibitors as antibacterial agents. Biochem Pharmacol. 2006;71(7):941-8. PMid:16359642 DOI:

Guptat RL, Kumar R, Singla AK. Enhanced dissolution and absorption of trimethoprim from coprecipitates with polyethylene glycols and polyvinylpyrrolidone. Drug Dev Ind Pharm. 1991;17(3):463-8. DOI:

Pawar PH, Pawar AP, Mahadik KR, Paradkar AR. Evaluation of tableting properties of agglomerates obtained by spherical crystallisation of trimethroprim. Indian J Pharm Sci. 1998;60(1):24-8.

Nugrahani I, Fisandra F, Horikawa A, Uekusa H. New sodium mefenamate-nicotinamide multicomponent crystal development to modulate solubility and dissolution: Preparation, structural, and performance study. J Pharm Sci. 2021;110(9):324-60. PMid:34090898 DOI:

Zaini E, Afriyani A, Fitriani L, Ismed F, Horikawa A, Uekusa H. Improved solubility and dissolution rates in novel multicomponent crystals of piperine with succinic acid. Sci Pharm. 2020;88(2):21. DOI:

Yuliandra Y, Izadihari R, Rosaini H, Zaini E. Multicomponent crystals of mefenamic acid–tromethamine with improved dissolution rate. J Res Pharm. 2019;23(6):988-96. DOI:

Thakur TS, Thakuria R. Crystalline multicomponent solids: An alternative for addressing the hygroscopicity issue in pharmaceutical materials. Cryst Growth Des. 2020;20(9):6245-65. DOI:

Ainurofiq A, Mauludin R, Mudhakir D, Umeda D, Soewandhi SN, Putra OD, et al. Improving mechanical properties of desloratadine via multicomponent crystal formation. Eur J Pharm Sci. 2018;111:65-72. PMid:28958892 DOI:

Putra OD, Uekusa H. Pharmaceutical multicomponent crystals: Structure, design, and properties. In: Advances in Organic Crystal Chemistry. Singapore: Springer; 2020. p. 153-84. DOI:

Zaini E. Formation and characterization of sulfamethoxazole-trimethoprim cocrystal by milling process. J Appl Pharm Sci. 2018;7(12):169-73. JAPS.2017.71224

Muthiah PT, Francis S, Rychlewska U, Warzajtis B. Crystal engineering of analogous and homologous organic compounds: Hydrogen bonding patterns in trimethoprim hydrogen phthalate and trimethoprim hydrogen adipate. Beilstein J Org Chem. 2006;2:8. PMid:16603061 DOI:

Bryan RF, Haltiwanger RC, Woode MK. Trimethoprim acetate. Acta Crystallogr Sect C. 1987;43(12):2412-5. DOI:

Umadevi B, Prabakaran P, Muthiah PT. A pseudo-quadruple hydrogen-bonding motif consisting of six N-H.O hydrogen bonds in trimethoprim formate. Acta Crystallogr C. 2002;58(8):o510-2. PMid:12154314 DOI:

Prabakaran P, Robert J, Muthiah P, Bocelli G, Righi L. Aminopyrimidine-carboxyl(ate) interactions in trimethoprim maleate, an antifolate drug. Acta Crystallogr C. 2001;57(4):459-61. PMid:11313594 DOI:

Bhattacharya B, Das S, Lal G, Soni S, Ghosh A, Reddy C, et al. Screening, crystal structures and solubility studies of a series of multidrug salt hydrates and cocrystals of fenamic acids with trimethoprim and sulfamethazine. J Mol Struct. 2019;1199:127028. DOI:

Al Rahal O, Williams PA, Hughes CE, Kariuki BM, Harris KD. Structure determination of multicomponent crystalline phases of (S)-ibuprofen and l-proline from powder X-ray diffraction data, augmented by complementary experimental and computational techniques. Cryst Growth Des. 2021;21(4):2498-507. DOI:

Zaini E, Fitriani L, Sari RY, Rosaini H, Horikawa A, Uekusa H. Multicomponent crystal of mefenamic acid and n-methyl-d-glucamine: Crystal structures and dissolution study. J Pharm Sci. 2019;108(7):2341-8. PMid:30779887 DOI:

Ma D, Pei T, Bai Y, Zhou L, Bao Y, Yin Q, et al. Salts formation between ibuprofen and pyridine derivatives: Effect of amino group on supramolecular packing and proton transfer. J Mol Struct. 2019;1179:487-94. DOI:

Martins F, Guimarães F, Honorato S, Ayala A, Ellena J. Vibrational and thermal analyses of multicomponent crystal forms of the anti-HIV drugs lamivudine and zalcitabine. J Pharm Biomed Anal. 2015;110:76-82. PMid:25808817 DOI:

Ishihara S, Hattori Y, Otsuka M, Sasaki T. Cocrystal formation through solid-state reaction between ibuprofen and nicotinamide revealed using THz and IR spectroscopy with multivariate analysis. Crystals. 2020;10(9):760. DOI:

Dwichandra Putra O, Umeda D, Fujita E, Haraguchi T, Uchida T, Yonemochi E, et al. Solubility improvement of benexate through salt formation using artificial sweetener. Pharmaceutics. 2018;10(2):64. PMid:29861459 DOI:

Yuliandra Y, Hutabarat LJ, Ardila R, Octavia MD, Zaini E. Enhancing solubility and antibacterial activity using multicomponent crystals of trimethoprim and malic acid. Pharm Educ. 2021;21(2):296-304. DOI:




How to Cite

Umar S, Farnandi R, Salsabila H, Zaini E. Multicomponent Crystal of Trimethoprim and Citric Acid: Solid State Characterization and Dissolution Rate Studies. Open Access Maced J Med Sci [Internet]. 2022 Jan. 15 [cited 2024 Apr. 20];10(A):141-5. Available from: