Establishing a Reference Interval for an Estimate of Peripheral Insulin Resistance in a Group of Iraqi People
DOI:
https://doi.org/10.3889/oamjms.2022.7928Keywords:
TyG index, HOMA, Insulin resistance, Reference interval, Surrogate measuresAbstract
Background and aims: Insulin resistance (IR) is the cornerstone in pathophysiology of T2DM. Identifying people with IR can slow the progress to diabetes. Triglyceride and glucose index (TyG index) is a simple tool to assess IR without insulin measurement. This study aims at establishing the reference interval for TyG index in apparently healthy Iraqis. Material and method: This study involved (77) apparently healthy adults (41 men and 36 women) in Mosul, Iraq. Fasting Serum lipids, glucose and insulin were measured and BMI was calculated. The modified TyG index was calculated and compared to other surrogate measures of IR and its reference interval was calculated. Results: TyG index values were normally distributed and significantly correlated with HOMA-IR, Mc-Auley index, QUICKI, and triglycerides/ HDL-c index (r= 0.322, p= 0.004; r=-0.68, p<0001; r= -0.29, p=0.01; r=0.84, p<0.0001respectively). ANOVA and PostHoc Duncan’s analyses revealed significant differences in mean TyG between (lean people) and (overweight and obese subjects), (p=0.02). BMI- based TyG reference intervals were calculated as (4.11- 4.91) and (4.25- 5.05) respectively. This is the first study in Iraq to set a reference interval for TyG index. Values should be interpreted according to BMI.
Downloads
Metrics
Plum Analytics Artifact Widget Block
References
Reddy PH. Can diabetes be controlled by lifestyle activities? Curr Res Diabetes Obes J. 2017;1(4):555568. PMid:29399663
Skyler JS, Bakris GL, Bonifacio E, Darsow T, Eckel RH, Groop L, et al. Differentiation of diabetes by pathophysiology, natural history, and prognosis. Diabetes 2017;66:241-55. https://doi.org/10.2337/db16-0806 PMid:27980006 DOI: https://doi.org/10.2337/db16-0806
Sagesaka H, Sato Y, Someya Y, Tamura Y, Shimodaira M, Miyakoshi T, et al. Type 2 diabetes: When does it start? J Endocr Soc. 2018;2(5):476-484. https://doi.org/10.1210/js.2018-00071 PMid:29732459 DOI: https://doi.org/10.1210/js.2018-00071
Ormazabal V, Nair S, Elfeky O, Aguayo C, Salomon C, Zuniga FA. Association between insulin resistance and the development of cardiovascular disease. Cardiovasc Diabetol. 2018;17(1):122. https://doi.org/10.1186/s12933-018-0762-4 PMid:30170598 DOI: https://doi.org/10.1186/s12933-018-0762-4
Heise T, Zijlstra E, Nosek L, Heckermann S, Plum-Mörschel L, Forst T. Euglycaemic glucose clamp: what it can and cannot do, and how to do it. Diabetes Obes Metab. 2016;18(10):962-72. https://doi.org/10.1111/dom.12703 PMid:27324560 DOI: https://doi.org/10.1111/dom.12703
Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Teacher DF, Turner RC. Homeostasis model assessment: Insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28(7):412-9. https://doi.org/10.1007/BF00280883 PMid:3899825 DOI: https://doi.org/10.1007/BF00280883
Wallace TM, Levy JC, Matthews DR. Use and abuse of HOMA modeling. Diabetes Care. 2004;27(6):1487-95. https://doi.org/10.2337/diacare.27.6.1487 PMid:15161807 DOI: https://doi.org/10.2337/diacare.27.6.1487
Gutch M, Kumar S, Razi SM, Gupta KK, Gupta A. Assessment of insulin sensitivity/resistance. Indian J Endocrinol Metab. 2015;19(1):160-4. https://doi.org/10.4103/2230-8210.146874 PMid:25593845 DOI: https://doi.org/10.4103/2230-8210.146874
Robins SJ, Lyass A, Zachariah JP, Massaro JM, Vasan RS. Insulin resistance and the relation of a dyslipidemia to coronary heart disease. The Framingham heart study. Arterioscler Thromb Vasc Biol. 2011;31(5):1208-14. https://doi.org/10.1161/ATVBAHA.110.219055 PMid:21311041 DOI: https://doi.org/10.1161/ATVBAHA.110.219055
Jung UJ, Choi MS. Obesity and its metabolic complications: The role of adipokines and the relationship between obesity, inflammation, insulin resistance, dyslipidemia and nonalcoholic fatty liver disease. Int J Mol Sci. 2014;15(4):6184-223. https://doi.org/10.3390/ijms15046184 PMid:24733068 DOI: https://doi.org/10.3390/ijms15046184
Akhtar DH, Iqbal V, Vazquez-Montesino LM, Dennis BB, Ahmed A. Pathogenesis of insulin resistance and atherogenic dyslipidemia in nonalcoholic fatty liver disease. J Clin Transl Hepatol. 2019;7(4):362-70. https://doi.org/10.14218/JCTH.2019.00028 PMid:31915606 DOI: https://doi.org/10.14218/JCTH.2019.00028
Simental-Mendía LE, Rodríguez-Morán M, Guerrero-Romero F. The product of fasting glucose and triglycerides as surrogate for identifying insulin resistance in apparently healthy subjects. Metab Syndr Relat Disord. 2008;6(4):299-304. https://doi.org/10.1089/met.2008.0034 PMid:19067533 DOI: https://doi.org/10.1089/met.2008.0034
Krachler B, Volgyi E, Savonen K, Tylavsky FA, Alén M, Cheng S. BMI and an anthropometry-based estimate of fat mass percentage are both valid discriminators of cardiometabolic risk: A comparison with DXA and bioimpedance. J Obes. 2013;2013:862514. https://doi.org/10.1155/2013/862514 PMid:24455216 DOI: https://doi.org/10.1155/2013/862514
Williams B, Mancia G, Spiering W, Rosei EA, Azizi M, Burnier M, et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension. Eur Heart J. 2018;39(33):3021-104. https://doi.org/10.1093/eurheartj/ehy339 PMid:30165516 DOI: https://doi.org/10.1093/eurheartj/ehy439
Güemes M, Rahman SA, Hussain K. What is a normal blood glucose? Arch Dis Child. 2016;101(6):569-74. https://doi.org/10.1136/archdischild-2015-308336 PMid:26369574 DOI: https://doi.org/10.1136/archdischild-2015-308336
Warnick GR, Mayfield C, Benderson J, Chen JS, Albers JJ. HDL cholesterol quantitation by phosphotungstate-Mg2+ and by dextran sulfate-Mn2+-polyethylene glycol precipitation, both with enzymatic cholesterol assay compared with the lipid research method. Am J Clin Pathol. 1982;78(5):718-23. https://doi.org/10.1093/ajcp/78.5.718 PMid:6182791 DOI: https://doi.org/10.1093/ajcp/78.5.718
Friedewald WT, Levy RI, Fredrickson DS. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem. 1972;18(6):499-502. PMid:4337382 DOI: https://doi.org/10.1093/clinchem/18.6.499
Lee JS, Chang PY, Zhang Y, Kizer JR, Best LG, Howard BV. Triglyceride and HDL-C dyslipidemia and risks of coronary heart disease and ischemic stroke by glycemic dysregulation status: The Strong Heart study. Diabetes Care. 2017;40(4):529-37. https://doi.org/10.2337/dc16-1958. PMid:28122840 DOI: https://doi.org/10.2337/dc16-1958
McAuley KA, Williams SM, Mann JI. Diagnosing insulin resistance in the general population. Diabetes Care. 2001;24:460-4. https://doi.org/10.2337/diacare.24.3.460 PMid:11289468 DOI: https://doi.org/10.2337/diacare.24.3.460
Katz A, Nambi SS, Mather K, Baron AD, Follmann DA, Sullivan G, et al. Quantitative insulin sensitivity check index: A simple, accurate method for assessing insulin sensitivity in humans. J Clin Endocrinol Metab. 2000;85(7):2402-10. https://doi.org/10.1210/jcem.85.7.6661 PMid:10902785 DOI: https://doi.org/10.1210/jcem.85.7.6661
Hosseini SM. Triglyceride glucose index simulation. J Clin Basic Res. 2017;1(1):11-6. DOI: https://doi.org/10.18869/acadpub.jcbr.1.1.11
Yakushiji H, Goto T, Shirasaka W, Hagiwara Y, Watase H, Okamoto H, et al. Associations of obesity with tracheal intubation success on first attempt and adverse events in the emergency department: An analysis of the multicenter prospective observational study in Japan. PLoS One. 2018;13(4):e0195938. https://doi.org/10.1371/journal.pone.0195938 PMid:29672600 DOI: https://doi.org/10.1371/journal.pone.0195938
Mula-Abed WS, Al-Naemi AH. Prevalence of diabetes mellitus in Mosul City: Comparison of 1997 American diabetes association classification with 1985 world health Organization classification. Ann Coll Med Mosul. 2002;28(2):109-16.
Feldman Al, Long GH, Johansson I, Weinehall L, Fhärm E, Wennberg P, et al. Change in lifestyle behaviors and diabetes risk: Evidence from a population-based cohort study with 10 year follow-up. Int J Behav Nutr Phys Act. 2017;14(1):39. https://doi.org/10.1186/s12966-017-0489-8 PMid:28351358 DOI: https://doi.org/10.1186/s12966-017-0489-8
Tam CS, Xie W, Johnson WD, Cefalu WT, Redman LM, Ravussin E. Defining insulin resistance from hyperinsulinemic-euglycemic clamps. Diabetes Care. 2012;35(7):1605-10. https://doi.org/10.2337/dc11-2339 PMid:22511259 DOI: https://doi.org/10.2337/dc11-2339
Ascaso JF, Romero P, Real JT, Priego A, Valdecabres C, Carmena R. Insulin resistance quantification by fasting insulin plasma values and HOMA index in a non-diabetic population. Med Clin (Barc). 2001;117(14):530-3. https://doi.org/10.1016/s0025-7753(01)72168-9 PMid:11707218 DOI: https://doi.org/10.1016/S0025-7753(01)72168-9
Lee JM, Okumura MJ, Davis MM, Herman WH, Gurney JG. Prevalence and determinants of insulin resistance among U.S. adolescents: A population-based study. Diabetes Care. 2006;29(11):2427-32. https://doi.org/10.2337/dc06-0709 PMid:17065679 DOI: https://doi.org/10.2337/dc06-0709
Yamada C, Mitsuhashi T, Hiratsuka N, Inabe F, Araida N, Takahashi E. Optimal reference interval for homeostasis model assessment of insulin resistance in a Japanese population. J Diabetes Investig. 2011;2(5):373-6. https://doi.org/10.1111/j.2040-1124.2011.00113.x PMid:24843516 DOI: https://doi.org/10.1111/j.2040-1124.2011.00113.x
Kelley DE, Goodpaster BH. Skeletal muscle triglyceride. An aspect of regional adiposity and insulin resistance. Diabetes Care. 2001;24(5):933-41. https://doi.org/10.2337/diacare.24.5.933 PMid:11347757 DOI: https://doi.org/10.2337/diacare.24.5.933
Ryysy L, Häkkinen AM, Goto T, Vehkavaara S, Westerbacka J, Halavaara J, et al. Hepatic fat content and insulin action on free fatty acids and glucose metabolism rather than insulin absorption are associated with insulin requirements during insulin therapy in Type 2 diabetic patients. Diabetes. 2000;49(5):749-58. https://doi.org/10.2337/diabetes.49.5.749 PMid:10905483 DOI: https://doi.org/10.2337/diabetes.49.5.749
Navarro-González D, Sánchez-Íñigo L, Pastrana-Delgado J, Fernández-Montero A, Martinez JA. Triglyceride glucose index (TyG index) in comparison with fasting plasma glucose improved diabetes prediction in patients with normal fasting glucose: The Vascular-Metabolic CUN cohort. Prev Med. 2016;86:99-105. https://doi.org/10.1016/j.ypmed.2016.01.022 PMid:26854766 DOI: https://doi.org/10.1016/j.ypmed.2016.01.022
Zheng R, Mao Y. Triglyceride and glucose (TyG) index as a predictor of incident hypertension: A 9- year longitudinal population- based study. Lipids Health Dis. 2017;16(1):175. https://doi.org/10.1186/s12944-017-0562-y PMid:28903774 DOI: https://doi.org/10.1186/s12944-017-0562-y
Kitae A, Hashimoto Y, Hamaguchi M, Obora A, Kojima T, Fukui M. The triglyceride and glucose index is a predictor of incident nonalcoholic fatty liver disease: A population- based cohort study. Can J Gastroenterol Hepatol. 2019;2019:5121574. https://doi.org/10.1155/2019/5121574 PMid:31687367 DOI: https://doi.org/10.1155/2019/5121574
Häggström M. Establishment and clinical use of reference ranges. Wiki J Med. 2014;1(1):1-7. https://doi.org/10.15347/wjm/2014.003 DOI: https://doi.org/10.15347/wjm/2014.003
Downloads
Published
How to Cite
License
Copyright (c) 2022 Amjad Al-Naemi (Author)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
http://creativecommons.org/licenses/by-nc/4.0