COVID-19 Pandemic: What Considerations Should Be Taken during the Assessment and Management of COPD Exacerbation?
DOI:
https://doi.org/10.3889/oamjms.2022.7930Keywords:
SARS-CoV-2, Pneumonia, Chronic respiratory disease, Corticosteroid, Angiotensin-converting enzyme 2Abstract
The on-going coronavirus disease 2019 (COVID-19) pandemic could contribute to higher mortality in population with underlying respiratory diseases, including chronic obstructive pulmonary disease (COPD). The aim of this review was to inform readers pertaining to the correlation of COPD exacerbation and severe acute respiratory syndrome-2 (SARS-CoV-2) infection along with considerations that could be taken in the clinical diagnosis and management. The literature search was conducted on Google Scholar, Scopus, and PubMed databases using related terms (such as, but not limited to, “COVID-19,” “SARS-CoV-2,” “COPD management,” “N-acetylcysteine,” and “corticosteroids”) on November 1–9, 2021. Recent studies suggest that COVID-19 and COPD are correlated through three pathways, namely, angiotensin-converting enzyme 2 expression, dysregulation of biological parameters, and occurrence of pneumonia. Early detection of COVID-19 in patients with underlying COPD is difficult because they share similar symptoms, attributed to advanced progression of the infection and subsequently deteriorates lung function. During COPD management, clinicians are expected to take consideration on the effect of systemic corticosteroids if patients develop COVID-19. In conclusion, COVID-19 and COPD and its management are potentially correlated, contributing to the worsening of the disease. There is a need of immediate research to reveal the true correlation between COVID-19 and COPD to improve the management.
Downloads
Metrics
Plum Analytics Artifact Widget Block
References
Fajar JK, Ilmawan M, Mamada S, Mutiawati E, Husnah M, Yusuf H, et al. Global prevalence of persistent neuromuscular symptoms and the possible pathomechanisms in COVID-19 recovered individuals: A systematic review and meta-analysis. Narra J. 2021;1:e48. https://doi.org/10.52225/narra.v1i3.48 DOI: https://doi.org/10.52225/narra.v1i3.48
Bintari DC, Sudibyo DA, Karimah A. Correlation between depression level and headache severity: A study among medical students during the COVID-19 pandemic. Narra J. 2021;1:e64. https://doi.org/10.52225/narra.v1i3.64 DOI: https://doi.org/10.52225/narra.v1i3.64
Fahriani M, Ilmawan M, Fajar JK, Maliga HA, Frediansyah A, Masyeni S, et al. Persistence of long COVID symptoms in COVID-19 survivors worldwide and its potential pathogenesis-a systematic review and meta-analysis. Narra J. 2021;1:e36. https://doi.org/10.52225/narraj.v1i2.36 DOI: https://doi.org/10.52225/narraj.v1i2.36
Mutiawati E, Syahrul S, Fahriani M, Fajar JK, Mamada SS, Maliga HA, et al. Global prevalence and pathogenesis of headache in COVID-19: A systematic review and meta-analysis. F1000Research 2021;9:1316. https://doi.org/10.12688/f1000research.27334.2 PMid:33953911 DOI: https://doi.org/10.12688/f1000research.27334.2
Sarengat R, Islam MS, Ardhi MS. Correlation of neutrophil-tolymphocyte ratio and clinical outcome of acute thrombotic stroke in patients with COVID-19. Narra J. 2021;1:e50. https://doi.org/10.52225/narra.v1i3.50 DOI: https://doi.org/10.52225/narra.v1i3.50
Fahriani M, Anwar S, Yufika A, Bakhtiar B, Wardani E, Winardi W, et al. Disruption of childhood vaccination during the COVID-19 pandemic in Indonesia. Narra J. 2021;1:e7. https://doi.org/10.52225/narraj.v1i1.7 DOI: https://doi.org/10.52225/narraj.v1i1.7
Wagner AL, Rajamoorthy Y, Taib NM. Impact of economic disruptions and disease experiences on COVID-19 vaccination uptake in Asia: A study in Malaysia. Narra J. 2021;1:e42. https://doi.org/10.52225/narraj.v1i2.42 DOI: https://doi.org/10.52225/narraj.v1i2.42
Dhama K, Patel SK, Kumar R, Masand R, Rana J, Yatoo MI, et al. The role of disinfectants and sanitizers during COVID-19 pandemic: Advantages and deleterious effects on humans and the environment. Environ Sci Pollut Res Int. 2021;28(26):34211-28. https://doi.org/10.1007/s11356-021-14429-w PMid:33991301 DOI: https://doi.org/10.1007/s11356-021-14429-w
Mustafa SK, Ahmad MA, Baranova V, Deineko Z, Lyashenko V, Oyouni A. Using wavelet analysis to assess the impact of COVID-19 on changes in the price of basic energy resources. Int J Emerg Trends Eng Res. 2020;8:2907-12. DOI: https://doi.org/10.30534/ijeter/2020/04872020
Rabaan AA, Al-Ahmed SH, Sah R, Al-Tawfiq JA, Al-Qaaneh AM, Al-Jamea LH, et al. Recent advances in vaccine and immunotherapy for COVID-19. Hum Vaccin Immunother. 2020;16(12):3011-22. https://doi.org/10.1080/21645515.2020.1825896 PMid:33156739 DOI: https://doi.org/10.1080/21645515.2020.1825896
Frediansyah A, Tiwari R, Sharun K, Dhama K, Harapan H. Antivirals for COVID-19: A critical review. Clin Epidemiol Glob Health. 2021;9:90-8. https://doi.org/10.1016/j.cegh.2020.07.006 PMid:33521390 DOI: https://doi.org/10.1016/j.cegh.2020.07.006
Dhama K, Natesan S, Yatoo MI, Patel SK, Tiwari R, Saxena SK, et al. Plant-based vaccines and antibodies to combat COVID-19: Current status and prospects. Hum Vaccin Immunother. 2020;16(12):2913-20. https://doi.org/10.1080/21645515.2020.1842034 PMid:33270484 DOI: https://doi.org/10.1080/21645515.2020.1842034
Sharun K, Tiwari R, Yatoo MI, Patel SK, Natesan S, Dhama J, et al. Antibody-based immunotherapeutics and use of convalescent plasma to counter COVID-19: Advances and prospects. Expert Opin Biol Ther. 2020;20(9):1033-46. https://doi.org/10.1080/14712598.2020.1796963 PMid:32744917 DOI: https://doi.org/10.1080/14712598.2020.1796963
Mustafa SK, Aljohani MM, Alomrani NA. COVID-19 and immune function-“a significant” zinc. Oriental J Chem. 2020;36:1026-36. DOI: https://doi.org/10.13005/ojc/360604
Rosiello DF, Ferreto LE, Aburto JT, Rojas JE, Enitan SS, Yomi AR, et al. Acceptance of COVID-19 vaccination at different hypothetical efficacy and safety levels in ten countries in Asia, Africa, and South America. Narra J. 2021;1:e55. DOI: https://doi.org/10.52225/narra.v1i3.55
Hassan W, Kazmi SK, Tahir MJ, Ullah I, Royan HA, Fahriani M, et al. Global acceptance and hesitancy of COVID-19 vaccination: A narrative review. Narra J. 2021;1:e57. DOI: https://doi.org/10.52225/narra.v1i3.57
Telles CR, Roy A, Ajmal MR, Mustafa SK, Ahmad MA, De La Serna JM, et al. The impact of COVID-19 management policies tailored to airborne SARS-CoV-2 transmission: Policy analysis. JMIR Public Health Surveill. 2021;7(4):e20699. https://doi.org/10.2196/20699 PMid:33729168 DOI: https://doi.org/10.2196/20699
Bastola A, Sah R, Rajbhandari SK, Jha R, Fathah Z, Chalise BS, et al. SARS-CoV-2 and Orientia tsutsugamushi co-infection in a young teen, Nepal: Significant burden in limited-resource countries in Asia? Narra J. 2021;1:e34. https://doi.org/10.52225/narraj.v1i2.34 DOI: https://doi.org/10.52225/narraj.v1i2.34
Sanyaolu A, Okorie C, Marinkovic A, Patidar R, Younis K, Desai P, et al. Comorbidity and its impact on patients with COVID-19. SN Compr Clin Med. 2020;2(8):1069-76. https://doi.org/10.1007/s42399-020-00363-4 PMid:32838147 DOI: https://doi.org/10.1007/s42399-020-00363-4
Yang J, Zheng Y, Gou X, Pu K, Chen Z, Guo Q, et al. Prevalence of comorbidities and its effects in patients infected with SARSCoV-2: A systematic review and meta-analysis. Int J Infect Dis 2020;94:91-5. https://doi.org/10.1016/j.ijid.2020.03.017 PMid:32173574 DOI: https://doi.org/10.1016/j.ijid.2020.03.017
Fan Z, Chen L, Li J, Cheng X, Yang J, Tian C, et al. Clinical features of COVID-19-related liver functional abnormality. Clin Gastroenterol Hepatol. 2020;18(7):1561-6. https://doi.org/10.1016/j.cgh.2020.04.002 PMid:32283325 DOI: https://doi.org/10.1016/j.cgh.2020.04.002
Wang B, Li R, Lu Z, Huang Y. Does comorbidity increase the risk of patients with COVID-19: Evidence from meta-analysis. Aging (Albany NY). 2020;12(7):6049-57. https://doi.org/10.18632/aging.103000 PMid:32267833 DOI: https://doi.org/10.18632/aging.103000
Miravitlles M, Ribera A. Understanding the impact of symptoms on the burden of COPD. Respir Res. 2017;18(1):67. https://doi.org/10.1186/s12931-017-0548-3 PMid:28431503 DOI: https://doi.org/10.1186/s12931-017-0548-3
Hanania NA, Sharafkhaneh A. COPD: A Guide to Diagnosis and Clinical Management. New Jersey, USA: Humana Press; 2011. DOI: https://doi.org/10.1007/978-1-59745-357-8
Mirza S, Clay RD, Koslow MA, Scanlon PD. COPD guidelines: A review of the 2018 GOLD report. Mayo Clin Proc. 2018;93(10):1488-502. https://doi.org/10.1016/j.mayocp.2018.05.026 PMid:30286833 DOI: https://doi.org/10.1016/j.mayocp.2018.05.026
Prasetyowati H, Dhewantara PW, Hendri J, Astuti EP, Gelaw YA, Harapan H, et al. Geographical heterogeneity and socioecological risk profiles of dengue in Jakarta, Indonesia. Geospat Health. 2021;16(1):183-93. https://doi.org/10.4081/gh.2021.948 PMid:33733650 DOI: https://doi.org/10.4081/gh.2021.948
Linden D, Guo-Parke H, Coyle PV, Fairley D, McAuley DF, Taggart CC, et al. Respiratory viral infection: A potential “missing link” in the pathogenesis of COPD. Eur Respir Rev. 2019;28(151):180063. https://doi.org/10.1183/16000617.0063-2018 PMid:30872396 DOI: https://doi.org/10.1183/16000617.0063-2018
Halpin DM, Criner GJ, Papi A, Singh D, Anzueto A, Martinez FJ, et al. Global initiative for the diagnosis, management, and prevention of chronic obstructive lung disease. The 2020 GOLD science committee report on COVID-19 and chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2021;203(1):24-36. https://doi.org/10.1164/rccm.202009-3533SO PMid:33146552 DOI: https://doi.org/10.1164/rccm.202009-3533SO
Rabe KF, Hurd S, Anzueto A, Barnes PJ, Buist SA, Calverley P, et al. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary. Am J Respir Crit Care Med. 2007;176(6):532-55. https://doi.org/10.1164/rccm.200703-456SO PMid:17507545 DOI: https://doi.org/10.1164/rccm.200703-456SO
Stolz D, Papakonstantinou E, Grize L, Schilter D, Strobel W, et al. Time-course of upper respiratory tract viral infection and COPD exacerbation. Eur Respir J. 2019;54(4):1900407. https://doi.org/10.1183/13993003.00407-2019 PMid:31391222 DOI: https://doi.org/10.1183/13993003.00407-2019
Iheanacho I, Zhang S, King D, Rizzo M, Ismaila AS. Economic burden of chronic obstructive pulmonary disease (COPD): A systematic literature review. Int J Chron Obstruct Pulmon Dis. 2020;15:439-60. https://doi.org/10.2147/COPD.S234942 PMid:32161455 DOI: https://doi.org/10.2147/COPD.S234942
Rothnie KJ, Mullerova H, Smeeth L, Quint JK. Natural history of chronic obstructive pulmonary disease exacerbations in a general practice-based population with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2018;198(4):464-71. https://doi.org/10.1164/rccm.201710-2029OC PMid:29474094 DOI: https://doi.org/10.1164/rccm.201710-2029OC
Mullerova H, Maselli DJ, Locantore N, Vestbo J, Hurst JR, Hurst JA, et al. Hospitalized exacerbations of COPD: Risk factors and outcomes in the ECLIPSE cohort. Chest. 2015;147(4):999-1007. https://doi.org/10.1378/chest.14-0655 PMid:25356881 DOI: https://doi.org/10.1378/chest.14-0655
Santos S, Marin A, Serra-Batlles J, de la Rosa D, Solanes I, et al. Treatment of patients with COPD and recurrent exacerbations: The role of infection and inflammation. Int J Chron Obstruct Pulmon Dis. 2016;11:515-25. https://doi.org/10.2147/COPD.S98333 PMid:27042040 DOI: https://doi.org/10.2147/COPD.S98333
Wang H, Anthony D, Selemidis S, Vlahos R, Bozinovski S. Resolving viral-induced secondary bacterial infection in COPD: A concise review. Front Immunol. 2018;9:2345. https://doi.org/10.3389/fimmu.2018.02345 PMid:30459754 DOI: https://doi.org/10.3389/fimmu.2018.02345
Heinrich J, Schikowski T. COPD patients as vulnerable subpopulation for exposure to ambient air pollution. Curr Environ Health Rep. 2018;5(1):70-6. https://doi.org/10.1007/s40572-018-0178-z PMid:29383658 DOI: https://doi.org/10.1007/s40572-018-0178-z
Sun XW, Chen PL, Ren L, Lin YN, Zhou JP, Ni L, et al. The cumulative effect of air pollutants on the acute exacerbation of COPD in Shanghai, China. Sci Total Environ. 2018;622-623:875-81. https://doi.org/10.1016/j.scitotenv.2017.12.042 PMid:29227938 DOI: https://doi.org/10.1016/j.scitotenv.2017.12.042
Liu D, Chen Q, Zhu H, Gong L, Huang Y, Li S, et al. Association of respiratory syncytial virus toll-like receptor 3-mediated immune response with COPD exacerbation frequency. Inflammation. 2018;41(2):654-66. https://doi.org/10.1007/s10753-017-0720-4 PMid:29264743 DOI: https://doi.org/10.1007/s10753-017-0720-4
Transmission of SARS-CoV-2: Implications for Infection Prevention Precautions; 2021. Available from: https://www.who.int/news-room/commentaries/detail/transmission-of-sarscov-2-implications-for-infection-prevention-precautions [Last accessed on 2021 Feb 14].
van Doremalen N, Bushmaker T, Morris DH, Holbrook MG, Gamble A, Brandi N, et al. Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. N Engl J Med. 2020;382(16):1564-7. https://doi.org/10.1056/NEJMc2004973 PMid:32182409 DOI: https://doi.org/10.1056/NEJMc2004973
Giron CC, Laaksonen A, da Silva FL. On the interactions of the receptor-binding domain of SARS-CoV-1 and SARS-CoV-2 spike proteins with monoclonal antibodies and the receptor ACE2. Virus Res. 2020;285:198021. https://doi.org/10.1016/j.virusres.2020.198021 PMid:32416259 DOI: https://doi.org/10.1016/j.virusres.2020.198021
Wang D, Zhou M, Nie X, Qiu W, Yang M, Wang X, et al. Epidemiological characteristics and transmission model of Corona Virus disease 2019 in China. J Infect. 2020;80:e25-7. https://doi.org/10.1016/j.jinf.2020.03.008 PMid:32171870 DOI: https://doi.org/10.1016/j.jinf.2020.03.008
Shafaghi AH, Talabazar FR, Koşar A, Ghorbani M. On the effect of the respiratory droplet generation condition on COVID-19 transmission. Fluids. 2020;5(3):113. https://doi.org/10.3390/fluids5030113 DOI: https://doi.org/10.3390/fluids5030113
Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579:270-3. https://doi.org/10.1038/s41586-020-2012-7 PMid:32015507 DOI: https://doi.org/10.1038/s41586-020-2012-7
Donoghue M, Hsieh F, Baronas E, Godbout K, Gosselin M, Stagliano N, et al. A novel angiotensin-converting enzymerelated carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1-9. Circ Res. 2000;87()5:E1-9. https://doi.org/10.1161/01.res.87.5.e1 PMid:10969042 DOI: https://doi.org/10.1161/01.RES.87.5.e1
Burrell LM, Risvanis J, Kubota E, Dean RG, MacDonald PS, Lu S, et al. Myocardial infarction increases ACE2 expression in rat and humans. Eur Heart J. 2005;26(4):369-75; discussion 322-4. https://doi.org/10.1093/eurheartj/ehi114 PMid:15671045 DOI: https://doi.org/10.1093/eurheartj/ehi114
Dariya B, Nagaraju GP. Understanding novel COVID-19: Its impact on organ failure and risk assessment for diabetic and cancer patients. Cytokine Growth Factor Rev. 2020;53:43-52. https://doi.org/10.1016/j.cytogfr.2020.05.001 PMid:32409230 DOI: https://doi.org/10.1016/j.cytogfr.2020.05.001
Docherty AB, Harrison EM, Green CA, Hardwick HE, Pius R, Norman L, et al. Features of 20 133 UK patients in hospital with COVID-19 using the ISARIC WHO clinical characterisation protocol: Prospective observational cohort study. BMJ. 2020;369:m1985. https://doi.org/10.1136/bmj.m1985 PMid:32444460 DOI: https://doi.org/10.1136/bmj.m1985
Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, et al. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N Engl J Med. 2020;382(8):727-33. https://doi.org/10.1056/NEJMoa2001017 PMid:31978945 DOI: https://doi.org/10.1056/NEJMoa2001017
Guan WJ, Liang WH, Zhao Y, Liang HR, Chen ZS, Li YM, et al. Comorbidity and its impact on 1590 patients with COVID-19 in China: A nationwide analysis. Eur Respir J. 2020;55(5):2000547. https://doi.org/10.1183/13993003.00547-2020 PMid:32217650 DOI: https://doi.org/10.1183/13993003.01227-2020
Xu G, Yang Y, Du Y, Peng F, Hu P, Wang R, et al. Clinical pathway for early diagnosis of COVID-19: Updates from experience to evidence-based practice. Clin Rev Allergy Immunol. 2020;59(1):89-100. https://doi.org/10.1007/s12016-020-08792-8 PMid:32328954 DOI: https://doi.org/10.1007/s12016-020-08792-8
Javanmardi F, Keshavarzi A, Akbari A, Emami A, Pirbonyeh N. Prevalence of underlying diseases in died cases of COVID-19: A systematic review and meta-analysis. PLoS One. 2020;15(10):e0241265. https://doi.org/10.1371/journal.pone.0241265 PMid:33095835 DOI: https://doi.org/10.1371/journal.pone.0241265
Hewitt R, Farne H, Ritchie A, Luke E, Johnston SL, Mallia P. The role of viral infections in exacerbations of chronic obstructive pulmonary disease and asthma. Ther Adv Respir Dis. 2016;10(2):158-74. https://doi.org/10.1177/1753465815618113 PMid:26611907 DOI: https://doi.org/10.1177/1753465815618113
Liao H, Yang Z, Yang C, Tang Y, Liu S, Guan W, et al. Impact of viral infection on acute exacerbation of asthma in out-patient clinics: A prospective study. J Thorac Dis. 2016;8(3):505-12. https://doi.org/10.21037/jtd.2016.02.76 PMid:27076947 DOI: https://doi.org/10.21037/jtd.2016.02.76
Halpin DM, Faner R, Sibila O, Badia JR, Agusti A. Do chronic respiratory diseases or their treatment affect the risk of SARSCoV-2 infection? Lancet Respir Med. 2020;8(5):436-8. https://doi.org/10.1016/s2213-2600(20)30167-3 PMid:32251625 DOI: https://doi.org/10.1016/S2213-2600(20)30167-3
Richardson S, Hirsch JS, Narasimhan M, Crawford JM, McGinn T, Davidson K, et al. Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized with COVID-19 in the New York city area. JAMA. 2020;323(20):2052-9. https://doi.org/10.1001/jama.2020.6775 PMid:32320003 DOI: https://doi.org/10.1001/jama.2020.6775
Drake TM, Riad AM, Fairfield CJ, Egan C, Knight SR, Pius R, et al. Characterisation of in-hospital complications associated with COVID-19 using the ISARIC WHO clinical characterisation protocol UK: A prospective, multicentre cohort study. Lancet. 2021;398(10296):223-37. https://doi.org/10.1016/s0140-6736(21)00799-6 PMid:34274064 DOI: https://doi.org/10.1016/S0140-6736(21)00983-1
Cariou B, Hadjadj S, Wargny M, Pichelin M, Al-Salameh A, Allix I, et al. Phenotypic characteristics and prognosis of inpatients with COVID-19 and diabetes: The CORONADO study. Diabetologia. 2020;63(8):1500-15. https://doi.org/10.1007/s00125-020-05180-x PMid:32472191 DOI: https://doi.org/10.1007/s00125-020-05180-x
Harmer D, Gilbert M, Borman R, Clark KL. Quantitative mRNA expression profiling of ACE 2, a novel homologue of angiotensin converting enzyme. FEBS Lett. 2002;532(1-2):107-10. https://doi.org/10.1016/s0014-5793(02)03640-2 PMid:12459472 DOI: https://doi.org/10.1016/S0014-5793(02)03640-2
Beyerstedt S, Casaro EB, Rangel EB. COVID-19: Angiotensinconverting enzyme 2 (ACE2) expression and tissue susceptibility to SARS-CoV-2 infection. Eur J Clin Microbiol Infect Dis. 2021;40(5):905-19. https://doi.org/10.1007/s10096-020-04138-6 PMid:33389262 DOI: https://doi.org/10.1007/s10096-020-04138-6
Leung JM, Yang CX, Tam A, Shaipanich T, Hackett TL, Singhera GK, et al. ACE-2 expression in the small airway epithelia of smokers and COPD patients: Implications for COVID-19. Eur Respir J. 2020;55(5):2000688. https://doi.org/10.1183/13993003.00688-2020 PMid:32269089 DOI: https://doi.org/10.1183/13993003.00688-2020
Yuan P, Ai P, Liu Y, Ai Z, Wang Y, et al. Safety, tolerability, and immunogenicity of COVID-19 vaccines: A systematic review and meta-analysis. medRxiv. 2020;2020:20224998. https://doi.org/10.1101/2020.11.03.20224998 PMid:33173896 DOI: https://doi.org/10.1101/2020.11.03.20224998
Banu N, Panikar SS, Leal LR, Leal AR. Protective role of ACE2 and its downregulation in SARS-CoV-2 infection leading to macrophage activation syndrome: Therapeutic implications. Life Sci. 2020;256:117905. https://doi.org/10.1016/j.lfs.2020.117905 PMid:32504757 DOI: https://doi.org/10.1016/j.lfs.2020.117905
Diao B, Wang C, Tan Y, Chen X, Liu Y, Ning L, et al. Reduction and functional exhaustion of T cells in patients with Coronavirus disease 2019 (COVID-19). Front Immunol. 2020;11:827. https://doi.org/10.3389/fimmu.2020.00827 PMid:32425950 DOI: https://doi.org/10.3389/fimmu.2020.00827
Wang Z, Yang B, Li Q, Wen L, Zhang R. Clinical features of 69 cases with coronavirus disease 2019 in Wuhan, China. Clin Infect Dis. 2020;71(15):769-77. https://doi.org/10.1093/cid/ciaa272 PMid:32176772 DOI: https://doi.org/10.1093/cid/ciaa272
Manthei DM, Schwantes EA, Mathur SK, Guadarrama AG, Kelly EA, Kelly JE, et al. Nasal lavage VEGF and TNF-alpha levels during a natural cold predict asthma exacerbations. Clin Exp Allergy. 2014;44(12):1484-93. https://doi.org/10.1111/cea.12387 PMid:25109477 DOI: https://doi.org/10.1111/cea.12387
Kubysheva N, Boldina M, Eliseeva T, Soodaeva S, Klimanov I, Khaletskaya A, et al. Relationship of serum levels of IL-17, IL-18, TNF-alpha, and lung function parameters in patients with COPD, asthma-COPD overlap, and bronchial asthma. Mediators Inflamm. 2020;2020:4652898. https://doi.org/10.1155/2020/4652898 PMid:32733164 DOI: https://doi.org/10.1155/2020/4652898
Huang AX, Lu LW, Liu WJ, Huang M. Plasma inflammatory cytokine IL-4, IL-8, IL-10, and TNF-alpha levels correlate with pulmonary function in patients with Asthma-chronic obstructive pulmonary disease (COPD) overlap syndrome. Med Sci Monit. 2016;22:2800-8. https://doi.org/10.12659/msm.896458 PMid:27501772 DOI: https://doi.org/10.12659/MSM.896458
Garth J, Barnes JW, Krick S. Targeting cytokines as evolving treatment strategies in chronic inflammatory airway diseases. Int J Mol Sci. 2018;19(11):3402. https://doi.org/10.3390/ijms19113402 PMid:30380761 DOI: https://doi.org/10.3390/ijms19113402
Celli BR, Locantore N, Yates J, Tal-Singer R, Miller BE, Bakke P, et al. Inflammatory biomarkers improve clinical prediction of mortality in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2012;185:1065-72. https://doi.org/10.1164/rccm.201110-1792OC PMid:22427534 DOI: https://doi.org/10.1164/rccm.201110-1792OC
Ridker PM. From C-reactive protein to interleukin-6 to interleukin-1: Moving upstream to identify novel targets for atheroprotection. Circ Res. 2016;118(1):145-56. https://doi.org/10.1161/CIRCRESAHA.115.306656 PMid:26837745 DOI: https://doi.org/10.1161/CIRCRESAHA.115.306656
Donaldson GC, Seemungal TA, Patel IS, Bhowmik A, Wilkinson TM, Hurst JR, et al. Airway and systemic inflammation and decline in lung function in patients with COPD. Chest. 2005;128:1995-2004. https://doi.org/10.1378/chest.128.4.1995 PMid:16236847 DOI: https://doi.org/10.1378/chest.128.4.1995
Fermont JM, Masconi KL, Jensen MT, Ferrari R, Di Lorenzo VA, Marott JM, et al. Biomarkers and clinical outcomes in COPD: A systematic review and meta-analysis. Thorax. 2019;74(5):439-46. https://doi.org/10.1136/thoraxjnl-2018-211855 PMid:30617161 DOI: https://doi.org/10.1136/thoraxjnl-2018-211855
Shi H, Han X, Jiang N, Cao Y, Alwalid O, Gu J, et al. Radiological findings from 81 patients with COVID-19 pneumonia in Wuhan, China: A descriptive study. Lancet Infect Dis. 2020;20:425-34. https://doi.org/10.1016/s1473-3099(20)30086-4 PMid:32105637 DOI: https://doi.org/10.1016/S1473-3099(20)30086-4
Andreassen SL, Liaaen ED, Stenfors N, Henriksen AH. Impact of pneumonia on hospitalizations due to acute exacerbations of COPD. Clin Respir J. 2014;8(1):93-9. https://doi.org/10.1111/crj.12043 PMid:23889911 DOI: https://doi.org/10.1111/crj.12043
Trethewey SP, Hurst JR, Turner AM. Pneumonia in exacerbations of COPD: What is the clinical significance? ERJ Open Res. 2020;6(1):282-2019. https://doi.org/10.1183/23120541.00282-2019 PMid:32010721 DOI: https://doi.org/10.1183/23120541.00282-2019
Tal-Singer R, Crapo JD. COPD at the time of COVID-19: A COPD foundation perspective. Chronic Obstr Pulm Dis. 2020;7(2):73-5. https://doi.org/10.15326/jcopdf.7.2.2020.0149 PMid:32324976 DOI: https://doi.org/10.15326/jcopdf.7.2.2020.0149
Fang Y, Zhang H, Xie J, Lin M, Ying L, Pang P, et al. Sensitivity of Chest CT for COVID-19: Comparison to RT-PCR. Radiology. 2020;296(2):E115-7. https://doi.org/10.1148/radiol.2020200432 PMid:32073353 DOI: https://doi.org/10.1148/radiol.2020200432
Yue H, Zhang M, Xing L, Wang K, Rao X, Liu H, et al. The epidemiology and clinical characteristics of co-infection of SARS-CoV-2 and influenza viruses in patients during COVID-19 outbreak. J Med Virol. 2020;92(11):2870-3. https://doi.org/10.1002/jmv.26163 PMid:32530499 DOI: https://doi.org/10.1002/jmv.26163
Gousseff M, Penot P, Gallay L, Batisse D, Benech N, Bouiller K, et al. Clinical recurrences of COVID-19 symptoms after recovery: Viral relapse, reinfection or inflammatory rebound? J Infect. 2020;81(5):816-46. https://doi.org/10.1016/j.jinf.2020.06.073 PMid:32619697 DOI: https://doi.org/10.1016/j.jinf.2020.06.073
Wong HY, Lam HY, Fong AH, Leung ST, Chin TW, Lo CS, et al. Frequency and distribution of chest radiographic findings in patients positive for COVID-19. Radiology. 2020;296(2):E72-8. https://doi.org/10.1148/radiol.2020201160 PMid:32216717 DOI: https://doi.org/10.1148/radiol.2020201160
Rodriguez-Morales AJ, Cardona-Ospina JA, Gutierrez-Ocampo E, Villamizar-Pena R, Holguin-Rivera Y, Escalera-Antezana JP, et al. Clinical, laboratory and imaging features of COVID-19: A systematic review and meta-analysis. Travel Med Infect Dis. 2020;34:101623. https://doi.org/10.1016/j.tmaid.2020.101623 PMid:32179124 DOI: https://doi.org/10.1016/j.tmaid.2020.101623
Inui S, Fujikawa A, Jitsu M, Kunishima N, Watanabe S, Suzuki Y, et al. Chest CT findings in cases from the cruise ship diamond princess with Coronavirus disease (COVID-19). Radiol Cardiothorac Imaging. 2020;2(2):e200110. https://doi.org/10.1148/ryct.2020200110 PMid:33778566 DOI: https://doi.org/10.1148/ryct.2020200110
Wu F, Zhou Y, Wang Z, Xie M, Shi Z, Tang Z, et al. Clinical characteristics of COVID-19 infection in chronic obstructive pulmonary disease: A multicenter, retrospective, observational study. J Thorac Dis. 2020;12(5):1811-23. https://doi.org/10.21037/jtd-20-1914 PMid:32642086 DOI: https://doi.org/10.21037/jtd-20-1914
Kulkarni S, Down B, Jha S. Point-of-care lung ultrasound in intensive care during the COVID-19 pandemic. Clin Radiol. 2020;75(9):710.e711-4. https://doi.org/10.1016/j.crad.2020.05.001 PMid:32405081 DOI: https://doi.org/10.1016/j.crad.2020.05.001
Saminan S, Julisafrida L, Sakdiah S, Idayati R, Fajri N, Iqhrammullah M. Nanoparticles-based face masks and respirators for preventing COVID-19 transmission: Breathability versus biocidal activities. Indian J Forensic Med Toxicol. 2021;15:4107-16. https://doi.org/10.37506/ijfmt.v15i2.15018 DOI: https://doi.org/10.37506/ijfmt.v15i2.15018
McAuley H, Hadley K, Elneima O, Brightling CE, Evans RA, Steiner MC, et al. COPD in the time of COVID-19: An analysis of acute exacerbations and reported behavioural changes in patients with COPD. ERJ Open Res. 2021;7(1):718-2020. https://doi.org/10.1183/23120541.00718-2020 PMid:33527075 DOI: https://doi.org/10.1183/23120541.00718-2020
Wahidi MM, Lamb C, Murgu S, Musani A, Shojaee S, Sachdeva A, et al. American association for bronchology and interventional pulmonology (AABIP) statement on the use of bronchoscopy and respiratory specimen collection in patients with suspected or confirmed COVID-19 infection. J Bronchology Interv Pulmonol. 2020;27(4):e52-4. https://doi.org/10.1097/LBR.0000000000000681 PMid:32195687 DOI: https://doi.org/10.1097/LBR.0000000000000681
Aggarwal AN, Gupta D, Jindal SK. The relationship between FEV1 and peak expiratory flow in patients with airways obstruction is poor. Chest. 2006;130(5):1454-61. https://doi.org/10.1378/chest.130.5.1454 PMid:17099024 DOI: https://doi.org/10.1016/S0012-3692(15)37323-2
Hernandez CR, Fernandez MN, Sanmartin AP, Roibas CM, Dominguez LC, Rial MI, et al. Validation of the portable airsmart spirometer. PLoS One. 2018;13(2):e0192789. https://doi.org/10.1371/journal.pone.0192789 PMid:29474502 DOI: https://doi.org/10.1371/journal.pone.0192789
Reis AJ, Alves C, Furtado S, Ferreira J, Drummond M, Robalo-Cordeiro C, et al. COPD exacerbations: Management and hospital discharge. Pulmonology. 2018;24(6):345-50. https://doi.org/10.1016/j.pulmoe.2018.06.006 PMid:30049647 DOI: https://doi.org/10.1016/j.pulmoe.2018.06.006
Montserrat-Capdevila J, Godoy P, Marsal JR, Barbe F. Predictive model of hospital admission for COPD exacerbation. Respir Care. 2015;60(9):1288-94. https://doi.org/10.4187/respcare.04005 PMid:26286737 DOI: https://doi.org/10.4187/respcare.04005
Hirano T, Matsunaga K, Hamada K, Uehara S, Suetake R, Yamaji Y, et al. Combination of assist use of short-acting beta-2 agonists inhalation and guidance based on patient-specific restrictions in daily behavior: Impact on physical activity of Japanese patients with chronic obstructive pulmonary disease. Respir Investig. 2019;57(2):133-9. https://doi.org/10.1016/j.resinv.2018.12.001 PMid:30612948 DOI: https://doi.org/10.1016/j.resinv.2018.12.001
Criner GJ, Bourbeau J, Diekemper RL, Ouellette DR, Goodridge D, Hernandez D, et al. Executive summary: Prevention of acute exacerbation of COPD: American college of chest physicians and canadian thoracic society guideline. Chest. 2015;147(4):883-93. https://doi.org/10.1378/chest.14-1677 PMid:25320966 DOI: https://doi.org/10.1378/chest.14-1677
Miravitlles M, Auladell-Rispau A, Monteagudo M, Vazquez-Niebla JC, Mohammed J, Nuñez A, et al. Systematic review on long-term adverse effects of inhaled corticosteroids in the treatment of COPD. Eur Respir Rev. 2021;30(160):210075. https://doi.org/10.1183/16000617.0075-2021 PMid:34168063 DOI: https://doi.org/10.1183/16000617.0075-2021
Wu L, Lan N, Yang X. Effects of empirical glucocorticoid use on severe acute exacerbation of COPD during hospitalization. Int J Chron Obstruct Pulmon Dis. 2021;16:2419-31. https://doi.org/10.2147/COPD.S300789 PMid:34471349 DOI: https://doi.org/10.2147/COPD.S300789
de Jong YP, Uil SM, Grotjohan HP, Postma DS, Kerstjens HA, Van Den Berg JW, et al. Oral or IV prednisolone in the treatment of COPD exacerbations: A randomized, controlled, doubleblind study. Chest. 2007;132(6):1741-7. https://doi.org/10.1378/chest.07-0208 PMid:17646228 DOI: https://doi.org/10.1378/chest.07-0208
Hasan SS, Capstick T, Zaidi ST, Kow CS, Merchant HA. Use of corticosteroids in asthma and COPD patients with or without COVID-19. Respir Med. 2020;170:106045. https://doi.org/10.1016/j.rmed.2020.106045 PMid:32843175 DOI: https://doi.org/10.1016/j.rmed.2020.106045
Kaiser UB, Mirmira RG, Stewart PM. Our response to COVID-19 as endocrinologists and diabetologists. J Clin Endocrinol Metab. 2020;105(5):1299-301. https://doi.org/10.1210/clinem/dgaa148 PMid:32232480 DOI: https://doi.org/10.1210/clinem/dgaa148
Wu C, Chen X, Cai Y, Xia J, Zhou X, Xu S, et al. Risk factors associated with acute respiratory distress syndrome and death in patients with Coronavirus disease 2019 Pneumonia in Wuhan, China. JAMA Intern Med. 2020;180(7):934-43. https://doi.org/10.1001/jamainternmed.2020.0994 PMid:32167524 DOI: https://doi.org/10.1001/jamainternmed.2020.0994
Wang Y, Zhang Y, Xie W, Yan B, Liu F, Zhang Y, et al. Mesenchymal stem cell-derived exosomes inhibits the activation of NLRP3 inflammasome in mice after myocardial infarction by releasing circASXL1. J Mol Cell Cardiol. 2020;140:57. https://doi.org/10.1016/j.yjmcc.2019.11.137 DOI: https://doi.org/10.1016/j.yjmcc.2019.11.137
Schultze A, Walker AJ, MacKenna B, Morton CE, Bhaskaran K, Brown JP, et al. Risk of COVID-19-related death among patients with chronic obstructive pulmonary disease or asthma prescribed inhaled corticosteroids: An observational cohort study using the OpenSAFELY platform. Lancet Respir Med. 2020;8(11):1106-20. https://doi.org/10.1016/s2213-2600(20)30415-x PMid:32979987 DOI: https://doi.org/10.1016/S2213-2600(20)30415-X
Jacobs DM, Pandit U, Sethi S. Acute exacerbations in chronic obstructive pulmonary disease: Should we use antibiotics and if so, which ones? Curr Opin Infect Dis. 2019;32(2):143-51. https://doi.org/10.1097/QCO.0000000000000533 PMid:30672788 DOI: https://doi.org/10.1097/QCO.0000000000000533
Verroken A, Scohy A, Gerard L, Wittebole X, Collienne C, Laterre RF, et al. Co-infections in COVID-19 critically ill and antibiotic management: A prospective cohort analysis. Crit Care. 2020;24(1):410. https://doi.org/10.1186/s13054-020-03135-7 PMid:32646494 DOI: https://doi.org/10.1186/s13054-020-03135-7
Rawson TM, Moore LSP, Zhu N, Ranganathan N, Skolimowska K, Gilchrist M, et al. Bacterial and fungal coinfection in individuals with coronavirus: A rapid review to support COVID-19 antimicrobial prescribing. Clin Infect Dis. 2020;71(9):2459-68. https://doi.org/10.1093/cid/ciaa530 PMid:32358954 DOI: https://doi.org/10.1093/cid/ciaa530
COVID-19 Clinical Management: Living Guidance; 2021. Available from: https://www.who.int/publications/i/item/WHO-2019-nCoV-clinical-2021-1 [Last accessed on 2021 Nov 08].
Sadowska AM, Verbraecken J, Darquennes K, De Backer WA. Role of N-acetylcysteine in the management of COPD. Int J Chron Obstruct Pulmon Dis. 2006;1()4:425-34. https://doi.org/10.2147/copd.2006.1.4.425 PMid:18044098 DOI: https://doi.org/10.2147/copd.2006.1.4.425
Shaykhiev R. Emerging biology of persistent mucous cell hyperplasia in COPD. Thorax. 2019;74(1):4-6. https://doi.org/10.1136/thoraxjnl-2018-212271 PMid:30266881 DOI: https://doi.org/10.1136/thoraxjnl-2018-212271
Crespo-Lessmann A, Bernal S, Del Rio E, Rojas E, Martinez-Rivera C, Marina N, et al. Association of the CFTR gene with asthma and airway mucus hypersecretion. PLoS One. 2021;16(6):e0251881. https://doi.org/10.1371/journal.pone.0251881 PMid:34086689 DOI: https://doi.org/10.1371/journal.pone.0251881
Tenorio M, Graciliano NG, Moura FA, Oliveira ACM, Goulart MO. N-acetylcysteine (NAC): Impacts on human health. Antioxidants (Basel). 2021;10(6):967. https://doi.org/10.3390/antiox10060967 PMid:34208683 DOI: https://doi.org/10.3390/antiox10060967
Cazzola M, Calzetta L, Page C, Jardim J, Chuchalin AG, Rogliani P, et al. Influence of N-acetylcysteine on chronic bronchitis or COPD exacerbations: A meta-analysis. Eur Respir Rev. 2015;24(137):451-61. https://doi.org/10.1183/16000617.00002215 PMid:26324807 DOI: https://doi.org/10.1183/16000617.00002215
Sadowska AM, Manuel YK, de Backer WA. Antioxidant and anti-inflammatory efficacy of NAC in the treatment of COPD: Discordant in vitro and in vivo dose-effects: A review. Pulm Pharmacol Ther. 2007;20(1):9-22. https://doi.org/10.1016/j.pupt.2005.12.007 PMid:16458553 DOI: https://doi.org/10.1016/j.pupt.2005.12.007
de Flora S, Balansky R, La Maestra S. Rationale for the use of N-acetylcysteine in both prevention and adjuvant therapy of COVID-19. FASEB J. 2020;34(10):13185-93. https://doi.org/10.1096/fj.202001807 PMid:32780893 DOI: https://doi.org/10.1096/fj.202001807
Poe FL, Corn J. N-acetylcysteine: A potential therapeutic agent for SARS-CoV-2. Med Hypotheses. 2020;143:109862. https://doi.org/10.1016/j.mehy.2020.109862 PMid:32504923 DOI: https://doi.org/10.1016/j.mehy.2020.109862
Downloads
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2022 Saminan Saminan, Linda Julisafrida, Muhammad Ridwan, Nurul Fajri (Author)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
http://creativecommons.org/licenses/by-nc/4.0