Daphnoretin from Carthamus tinctorius as a Potential Inflammatory Inhibitor in COVID-19 by Binding to Toll-like Receptor-4: An in silico Molecular Docking Study

Authors

  • Lismayana Hansur Doctoral Program in Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia; Department of Microbiology, Faculty of Medicine, Universitas Muhammadiyah Makassar, Makassar, Indonesia
  • Melva Louisa Department of Pharmacology and Therapeutics, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
  • Puspita Eka Wuyung Department of Pathological Anatomy, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia; Animal Research Facility, Indonesian Medical Education and Research Institute, Universitas Indonesia, Jakarta, Indonesia
  • Fadilah Fadilah Department of Chemistry, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia; Bioinformatics Core Facilities Cluster, Indonesian Medical Education and Research Institute (IMERI), Universitas Indonesia, Jakarta, Indonesia

DOI:

https://doi.org/10.3889/oamjms.2022.7961

Keywords:

Cytokine storm, FcγRIIa, Flavonoids, Rutin, SARS-CoV2

Abstract

BACKGROUND: Cytokine storm in COVID-19 patients has contributed to many morbidities and mortalities in patients. Studies have found that toll-like receptors (TLRs) and some Fc receptors play essential roles in the hyperactivation of the immune system. Up to date, researchers are still in progress to discover effective and safe drugs to alleviate the hyperinflammatory state in COVID-19. The previous studies had shown that Carthamus tinctorius and its bioactive compounds might have anti-inflammatory activities in animal models.

AIM: We aimed to investigate the possible interactions of several flavonoids from C. tinctorius with several immune system components using a biocomputational approach.

METHODS: Molecular docking was done using the AutoDock program based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) COVID-19 pathway. The most suitable receptors found were studied to study the interactions with several flavonoids from C. tinctorius.

RESULTS: TLR4, TLR8, and FcγRIIa were found to bind with SARS CoV2 inflammatory pathway and further selected as macromolecules for potential interactions study with 22 flavonoids from C. tinctorius. Of the 22 flavonoids studied, daphnoretin showed the best binding affinity with TLR4 and Rutin was shown to attach best with FcγRIIa. Unlike its excellent binding to TLR4, daphnoretin showed weak binding to TLR8.

CONCLUSION: Daphnoretin showed an excellent affinity with TLR4 and might be a good candidate as an inhibitor in hyperinflammatory reactions in COVID-19 DTLR8.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

Costela-Ruiz VJ, Illescas-Montes R, Puerta-Puerta JM, Ruiz C, Melguizo-Rodríguez L. SARS-CoV-2 infection: The role of cytokines in COVID-19 disease. Cytokine Growth Factor Rev. 2020;54:62-75. https://doi.org/10.1016/j.cytogfr.2020.06.001 PMid:32513566 DOI: https://doi.org/10.1016/j.cytogfr.2020.06.001

Tang Y, Liu J, Zhang D, Xu Z, Ji J, Wen C. Cytokine storm in COVID-19: The current evidence and treatment strategies. Front Immunol. 2020;11:1708. https://doi.org/10.3389/fimmu.2020.01708 PMid:32754163 DOI: https://doi.org/10.3389/fimmu.2020.01708

Jose RJ, Manuel A. COVID-19 cytokine storm: The interplay between inflammation and coagulation. Lancet Respir Med. 2020;8(6):e46-7. https://doi.org/10.1016/S2213-2600(20)30216-2 PMid:32353251 DOI: https://doi.org/10.1016/S2213-2600(20)30216-2

Zheng M, Karki R, Williams EP, Yang D, Fitzpatrick E, Vogel P, et al. TLR2 senses the SARS-CoV-2 envelope protein to produce inflammatory cytokines. Nat Immunol. 2021;22(7):829-38. DOI: https://doi.org/10.1038/s41590-021-00937-x

Onofrio L, Caraglia M, Facchini G, Margherita V, Placido S, Buonerba C. Toll-like receptors and COVID-19: A two-faced story with an exciting ending. Future Sci OA. 2020;6(8):Fso605. https://doi.org/10.2144/fsoa-2020-0091 PMid:32974046 DOI: https://doi.org/10.2144/fsoa-2020-0091

Brandão SC, Ramos JO, Dompieri LT, Godoi ET, Figueiredo JL, Sarinho ES, et al. Is Toll-like receptor 4 involved in the severity of COVID-19 pathology in patients with cardiometabolic comorbidities? Cytokine Growth Factor Rev. 2021;58:102-10. https://doi.org/10.1016/j.cytogfr.2020.09.002 PMid:32988728 DOI: https://doi.org/10.1016/j.cytogfr.2020.09.002

Takeda K, Akira S. Toll-like receptors in innate immunity. Int Immunol. 2005;17(1):1-14. https://doi.org/10.1093/intimm/dxh186 PMid:15585605 DOI: https://doi.org/10.1093/intimm/dxh186

Aboudounya MM, Heads RJ. COVID-19 and toll-like receptor 4 (TLR4): SARS-CoV-2 may bind and activate TLR4 to increase ACE2 expression, facilitating entry and causing hyperinflammation. Mediat Inflamm. 2021;2021:8874339. https://doi.org/10.1155/2021/8874339 PMid:33505220 DOI: https://doi.org/10.1155/2021/8874339

Khanmohammadi S, Rezaei N. Role of Toll-like receptors in the pathogenesis of COVID-19. J Med Virol. 2021;93(5):2735-9. https://doi.org/10.1002/jmv.26826 PMid:33506952 DOI: https://doi.org/10.1002/jmv.26826

Chakraborty S, Edwards K, Buzzanco AS, Memoli MJ, Sherwood R, Mallajosyula V, et al. Symptomatic SARS-CoV-2 infections display specific IgG Fc structures. MedRxiv. 2020; 2020:20103341.

Chakraborty S, Gonzalez J, Edwards K, Mallajosyula V, Buzzanco AS, Sherwood R, et al. Pro-inflammatory IgG Fc structures in patients with severe COVID-19. Nat Immunol. 2021; 22(1):67-73. DOI: https://doi.org/10.1038/s41590-020-00828-7

Lim WS, Emberson JR, Mafham M, Bell JL, Linsell L, Staplin N. Dexamethasone in hospitalized patients with COVID-19. N Engl J Med. 2020;384(8):693-704. https://doi.org/10.1056/NEJMoa2021436 PMid:32678530 DOI: https://doi.org/10.1056/NEJMoa2021436

COVID STEROID 2 Trial Group. Effect of 12 mg vs. 6 mg of dexamethasone on the number of days alive without life support in adults with COVID-19 and severe hypoxemia: The COVID STEROID 2 randomized trial. JAMA 2021;326(18):1807-17. https://doi.org/10.1001/jama.2021.18295 PMid:34673895 DOI: https://doi.org/10.1001/jama.2021.18295

Delshad E, Yousefi M, Sasannezhad P, Rakhshandeh H, Ayati Z. Medical uses of Carthamus tinctorius L. (Safflower): A comprehensive review from traditional medicine to modern medicine. Electron Physician. 2018;10(4):6672-81. https://doi.org/10.19082/6672 PMid:29881530 DOI: https://doi.org/10.19082/6672

Wu X, Cai X, Ai J, Zhang C, Liu N, Gao W. Extraction, structures, bioactivities and structure-function analysis of the polysaccharides from safflower (Carthamus tinctorius L.). Front Pharmacol. 2021;12:767947. https://doi.org/10.3389/fphar.2021.767947 PMid:34744747 DOI: https://doi.org/10.3389/fphar.2021.767947

Zhang Y, Song L, Pan R, Gao J, Zang BX, Jin M. Hydroxysafflor yellow a alleviates lipopolysaccharide-induced acute respiratory distress syndrome in mice. Biol Pharm Bull. 2017;40(2):135-44. https://doi.org/10.1248/bpb.b16-00329 PMid:28154251 DOI: https://doi.org/10.1248/bpb.b16-00329

Hansur L, Pawitan JA. The potential of hydroxysafflor yellow a as an adjuvant in COVID-19 patients with acute respiratory distress syndrome. Int Med J. 2021;28(5):527-31.

Sun CY, Pei CQ, Zang BX, Wang L, Jin M. The ability of hydroxysafflor yellow a to attenuate lipopolysaccharide-induced pulmonary inflammatory injury in mice. Phytother Res. 2010;24(12):1788-95. DOI: https://doi.org/10.1002/ptr.3166

Wang C, Huang Q, Wang C, Zhu X, Duan Y, Yuan S, et al. Hydroxysafflor yellow A suppresses oleic acid-induced acute lung injury via protein kinase A. Toxicol Appl Pharmacol. 2013;272(3):895-904. https://doi.org/10.1016/j.taap.2013.07.021 PMid:23933165 DOI: https://doi.org/10.1016/j.taap.2013.07.021

Mistry P, Laird MH, Schwarz RS, Greene S, Dyson T, Snyder GA, et al. Inhibition of TLR2 signaling by small molecule inhibitors targeting a pocket within the TLR2 TIR domain. Proc Natl Acad Sci. 2015;112(17):5455-60. https://doi.org/10.1073/pnas.1422576112 PMid:25870276 DOI: https://doi.org/10.1073/pnas.1422576112

Ono Y, Maejima Y, Saito M, Sakamoto K, Horita S, Shimomura K, et al. TAK-242, a specific inhibitor of Toll-like receptor 4 signalling, prevents endotoxemia-induced skeletal muscle wasting in mice. Sci Rep. 2020;10(1):694. DOI: https://doi.org/10.1038/s41598-020-57714-3

Lamphier M, Zheng W, Latz E, Spyvee M, Hansen H, Rose J, et al. Novel small molecule inhibitors of TLR7 and TLR9: Mechanism of action and efficacy in vivo. Mol Pharmacol. 2014;85(3):429-40. https://doi.org/10.1124/mol.113.089821 PMid:24342772 DOI: https://doi.org/10.1124/mol.113.089821

Hu Z, Tanji H, Jiang S, Zhang S, Koo K, Chan J, et al. Small-molecule TLR8 antagonists via structure-based rational design. Cell Chem Biol. 2018;25(10):1286-91.e3. DOI: https://doi.org/10.1016/j.chembiol.2018.07.004

Cendron AC, Wines BD, Brownlee RT, Ramsland PA, Pietersz GA, Hogarth PM. A FcgammaRIIa-binding peptide mimics the interaction between FcgammaRIIa and IgG. Mol Immunol. 2008;45(2):307-19. https://doi.org/10.1016/j.molimm.2007.06.152 PMid:17673295 DOI: https://doi.org/10.1016/j.molimm.2007.06.152

Pantsar T, Poso A. Binding affinity via docking: Fact and fiction. Molecules. 2018;23(8):1899. https://doi.org/10.3390/molecules23081899 PMid:30061498 DOI: https://doi.org/10.3390/molecules23081899

Arunan E, Desiraju GR, Klein RA, Sadlej J, Scheiner S, Alkorta I, et al. Defining the hydrogen bond: An account (IUPAC technical report). Pure Appl Chem. 2011;83(8):1619-36. DOI: https://doi.org/10.1351/PAC-REP-10-01-01

Otto S, Engberts JB. Hydrophobic interactions and chemical reactivity. Org Biomol Chem. 2003;1(16):2809-20. https://doi.org/10.1039/b305672d PMid:12968330 DOI: https://doi.org/10.1039/b305672d

Huang Y, Yang C, Xu XF, Xu W, Liu SW. Structural and functional properties of SARS-CoV-2 spike protein: Potential antivirus drug development for COVID-19. Acta Pharmacol Sin. 2020;41(9):1141-9. DOI: https://doi.org/10.1038/s41401-020-0485-4

Duan L, Zheng Q, Zhang H, Niu Y, Lou Y, Wang H. The SARS-CoV-2 spike glycoprotein biosynthesis, structure, function, and antigenicity: Implications for the design of spike-based vaccine immunogens. Front Immunol. 2020;11(2593):576622. https://doi.org/10.3389/fimmu.2020.576622 PMid:33117378 DOI: https://doi.org/10.3389/fimmu.2020.576622

Lan J, Ge J, Yu J, Shan S, Zhou H, Fan S, et al. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature. 2020;581(7807):215-20. https://doi.org/10.1038/s41586-020-2180-5 PMid:32225176 DOI: https://doi.org/10.1038/s41586-020-2180-5

Padhi S, Sanjukta S, Chourasia R, Labala RK, Singh SP, Rai AK. A multifunctional peptide from Bacillus fermented soybean for effective inhibition of SARS-CoV-2 S1 receptor binding domain and modulation of toll-like receptor 4: A molecular docking study. Front Mol Biosci. 2021;8(198):636647. https://doi.org/10.3389/fmolb.2021.636647 PMid:33869283 DOI: https://doi.org/10.3389/fmolb.2021.636647

Samad A, Ahammad F, Nain Z, Alam R, Imon RR, Hasan M, et al. Designing a multi-epitope vaccine against SARS-CoV-2: An immunoinformatics approach. J Biomol Struct Dyn. 2022; 40(1):14-30. DOI: https://doi.org/10.1080/07391102.2020.1792347

Jyotisha, Singh S, Qureshi IA. Multi-epitope vaccine against SARS-CoV-2 applying immunoinformatics and molecular dynamics simulation approaches. J Biomol Struct Dyn. 2020; 2020:1-17. DOI: https://doi.org/10.1080/07391102.2020.1844060

Sanami S, Alizadeh M, Nosrati M, Dehkordi KA, Azadegan- Dehkordi F, Tahmasebian S, et al. Exploring SARS-COV-2 structural proteins to design a multi-epitope vaccine using immunoinformatics approach: An in silico study. Comput Biol Med. 2021;133:104390. https://doi.org/10.1016/j.compbiomed.2021.104390 PMid:33895459 DOI: https://doi.org/10.1016/j.compbiomed.2021.104390

Bhattacharya M, Sharma AR, Mallick B, Sharma G, Lee SS, Chakraborty C. Immunoinformatics approach to understanding molecular interaction between multi-epitopic regions of SARS-CoV-2 spike-protein with TLR4/MD-2 complex. Infect Genet Evol. 2020;85:104587. https://doi.org/10.1016/j.meegid.2020.104587 PMid:33039603 DOI: https://doi.org/10.1016/j.meegid.2020.104587

Dosch SF, Mahajan SD, Collins AR. SARS coronavirus spike protein-induced innate immune response occurs via activation of the NF-kappaB pathway in human monocyte macrophages in vitro. Virus Res. 2009;142(1-2):19-27. https://doi.org/10.1016/j.virusres.2009.01.005 PMid:19185596 DOI: https://doi.org/10.1016/j.virusres.2009.01.005

Kar T, Narsaria U, Basak S, Deb D, Castiglione F, Mueller DM, et al. A candidate multi-epitope vaccine against SARS-CoV-2. Sci Rep. 2020;10(1):10895. DOI: https://doi.org/10.1038/s41598-020-67749-1

Sohn KM, Lee SG, Kim HJ, Cheon S, Jeong H, Lee J, et al. COVID-19 patients upregulate toll-like receptor 4-mediated inflammatory signaling that mimics bacterial sepsis. J Korean Med Sci. 2020;35(38):e343. https://doi.org/10.3346/jkms.2020.35.e343 PMid:32989935 DOI: https://doi.org/10.3346/jkms.2020.35.e343

Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497-506. https://doi.org/10.1016/S0140-6736(20)30183-5 PMid:31986264 DOI: https://doi.org/10.1016/S0140-6736(20)30183-5

Choudhury A, Mukherjee S. In silico studies on the comparative characterization of the interactions of SARS-CoV-2 spike glycoprotein with ACE-2 receptor homologs and human TLRs. J Med Virol. 2020;92(10):2105-13. https://doi.org/10.1002/jmv.25987 PMid:32383269 DOI: https://doi.org/10.1002/jmv.25987

Gadanec LK, McSweeney KR, Qaradakhi T, Ali B, Zulli A, Apostolopoulos V. Can SARS-CoV-2 virus use multiple receptors to enter host cells? Int J Mol Sci. 2021;22(3):992. https://doi.org/10.3390/ijms22030992 PMid:33498183 DOI: https://doi.org/10.3390/ijms22030992

Chen CA, Liu CK, Hsu ML, Chi CW, Ko CC, Chen JS, et al. Daphnoretin modulates differentiation and maturation of human dendritic cells through down-regulation of c-Jun N-terminal kinase. Int Immunopharmacol. 2017;51:25-30. https://doi.org/10.1016/j.intimp.2017.07.021 PMid:28772243 DOI: https://doi.org/10.1016/j.intimp.2017.07.021

Wang JP, Raung SL, Kuo YH, Teng CM. Daphnoretin-induced respiratory burst in rat neutrophils is, probably, mainly through protein kinase C activation. Eur J Pharmacol. 1995;288(3):341-8. https://doi.org/10.1016/0922-4106(95)90047-0 PMid:7774678 DOI: https://doi.org/10.1016/0922-4106(95)90047-0

Yu S, Guo H, Gao X, Li M, Bian H. Daphnoretin: An invasion inhibitor and apoptosis accelerator for colon cancer cells by regulating the Akt signal pathway. Biomed Pharmacother. 2019;111:1013-21. DOI: https://doi.org/10.1016/j.biopha.2019.01.003

Yang ZY, Kan JT, Cheng ZY, Wang XL, Zhu YZ, Guo W. Daphnoretin-induced apoptosis in HeLa cells: A possible mitochondria-dependent pathway. Cytotechnology. 2014;66(1):51-61. https://doi.org/10.1007/s10616-013-9536-8 PMid:24091880 DOI: https://doi.org/10.1007/s10616-013-9536-8

Downloads

Published

2022-01-31

How to Cite

1.
Hansur L, Louisa M, Wuyung PE, Fadilah F. Daphnoretin from Carthamus tinctorius as a Potential Inflammatory Inhibitor in COVID-19 by Binding to Toll-like Receptor-4: An in silico Molecular Docking Study. Open Access Maced J Med Sci [Internet]. 2022 Jan. 31 [cited 2024 Nov. 21];10(A):220-7. Available from: https://oamjms.eu/index.php/mjms/article/view/7961