In Vitro and In Vivo Study of Pandanus conoideus Oil Extract in the Maturation of Mouse Peritoneal Macrophages
DOI:
https://doi.org/10.3889/oamjms.2022.8005Keywords:
Extract, Inflammation, Macrophage, Maturation, Pandanus conoideusAbstract
Background: Pandanus conoideus (PC) is a traditional medicinal plant that has an interesting effect on inflammatory pathways, especially in the maturation of peritoneal macrophage (PM). PM involve in the pathogenesis of several types of human inflammatory diseases and abdominal cancers which can be targeted as a potential therapeutic strategy. We aim to explore the role of PC oil extract (PCOE) in the maturation of PM which may influence the effectiveness of inflammation.
Method: This study is a true-experimental in vitro and in vivo laboratory study using CH3 mice. To explore the role of PCOE on PM maturation, experiments were carried out in vitro (detection of nitrite oxide levels, detection of IL-1β levels, analysis of PM phagocytosis and proliferation, as well as flow cytometry analysis of MHC I, MHC II, CD14, and CD68 expression) and in vivo (analysis of PM phagocytosis and flow cytometry analysis of CD14 and CD68 expression). Data were analyzed using analysis of variance (ANOVA) then followed by Bonferroni Post Hoc test to compare the differences.
Result: PCOE substantially enhanced NO and IL-1β production from mice PM in a dose-dependent manner (p<0.05), upregulates CD68 and CD14 expression on mice and promotes mouse PM phagocytic activity in vitro and in vivo (p<0.01). However, PCOE does not affect the proliferation and MHC I and MHC II expression of mouse PM.
Conclusion: PCOE has a function in PM maturation by increasing the production of NO and IL-1β, enhancing the expression of CD14 and CD68, as well as promoting PM phagocytic activity.
Downloads
Metrics
Plum Analytics Artifact Widget Block
References
Kusmardi K, Wiyarta E, Estuningtyas A, Sahar N, Midoen YH, Tedjo A. Potential of Phaleria macrocarpa leaves ethanol extract to upregulate the expression of caspase-3 in mouse distal colon after dextran sodium sulphate induction. Pharmacogn J. 2021;13:23-9. DOI: https://doi.org/10.5530/pj.2021.13.4
Kusmardi K, Wiyarta E, Estuningtyas A, Sahar N, Midoen YH, Tedjo A, et al. Potential inhibition by phaleria macrocarpa leaves ethanol extract on Ki-67 expression in distal colon mouse. Pharmacogn J. 2021;13:443-9. DOI: https://doi.org/10.5530/pj.2021.13.56
Di Sotto A, Vitalone A, Di Giacomo S. Plant-derived nutraceuticals and immune system modulation: An evidence-based overview. Vaccines (Basel). 2020;8(3):468. DOI: https://doi.org/10.3390/vaccines8030468
Letviany Z, Murtiningrum, Santoso B, Roreng M, Latumahina R. Nutrient content of three clones of red fruit (Pandanus conoideus) during the maturity development. Int Food Res J. 2016;23:1217-25.
Achadiyani A, Septiani L, Faried A, Bolly H, Dikdik K. Role of the red fruit (Pandanus conoideus Lam) ethyl acetate fraction on the induction of apoptosis vs. downregulation of survival signaling pathways in cervical cancer cells. European J Med Plants. 2016;13:1-9. DOI: https://doi.org/10.9734/EJMP/2016/24492
Liu T, Liu F, Peng LW, Chang L, Jiang YM. The peritoneal macrophages in inflammatory diseases and abdominal cancers. Oncol Res. 2018;26(5):817-26. https://doi.org/10.3727/096504017X15130753659625 PMid:29237519 DOI: https://doi.org/10.3727/096504017X15130753659625
Ponzoni M, Pastorino F, Di Paolo D, Perri P, Brignole C. Targeting macrophages as a potential therapeutic intervention: Impact on inflammatory diseases and cancer. Int J Mol Sci. 2018;19(7):1953. https://doi.org/10.3390/ijms19071953 PMid:29973487 DOI: https://doi.org/10.3390/ijms19071953
National Research Council Committee for the Update of the Guide for the C, Use of Laboratory A. The National Academies Collection: Reports funded by National Institutes of Health. Guide for the Care and Use of Laboratory Animals. Washington, DC: National Academies Press US; 2011.
Underwood W, Anthony R. AVMA Guidelines for the Euthanasia of Animals; 2020.
du Sert NP, Hurst V, Ahluwalia A, Alam S, Avey MT, Baker M, et al. The arrive guidelines 2.0: Updated guidelines for reporting animal research. PLoS Biol. 2020;18(7):e3000410. https://doi.org/10.1371/journal.pbio.3000410 PMid:32663219 DOI: https://doi.org/10.1371/journal.pbio.3000410
Wang Y, Cui X, Tai G, Ge J, Nan L, Chen F, et al. A critical role of activin A in maturation of mouse peritoneal macrophages in vitro and in vivo. Cell Mol Immunol. 2009;6:387-92. https://doi.org/10.1038/cmi.2009.50 PMid:19887052 DOI: https://doi.org/10.1038/cmi.2009.50
Figueroa LA, Abarca-Vargas R, Alanis CG, Petricevich VL. Comparison between peritoneal macrophage activation by Bougainvillea xbuttiana extract and LPS and/or interleukins. Biomed Res Int. 2017;2017:4602952. https://doi.org/10.1155/2017/4602952 PMid:29279849 DOI: https://doi.org/10.1155/2017/4602952
Mantegazza AR, Magalhaes JG, Amigorena S, Marks MS. Presentation of phagocytosed antigens by MHC class I and II. Traffic. 2013;14(2):135-52. https://doi.org/10.1111/tra.12026 PMid:23127154 DOI: https://doi.org/10.1111/tra.12026
Rhee YH, Park YK, Kim JS. Pandanus conoideus lamk oil protects against inflammation through regulating reactive oxygen species in LPS-induced murine macrophages. Nat Prod Commun. 2020;15(9):1934578X20953664. DOI: https://doi.org/10.1177/1934578X20953664
Italiani P, Boraschi D. From monocytes to M1/M2 macrophages: Phenotypical vs. functional differentiation. Front Immunol. 2014;5:514. https://doi.org/10.3389/fimmu.2014.00514 PMid:25368618 DOI: https://doi.org/10.3389/fimmu.2014.00514
Hana R, Yudhi H, Leonard HP. Pengaruh pemberian ekstrak buah merah (Pandanus conoideus Lam.) terhadap aktivitas fagositosis makrofag. Maranatha J Med Health. 2007;7(1):1-15.
Jaggi U, Yang M, Matundan HH, Hirose S, Shah PK, Sharifi BG, et al. Increased phagocytosis in the presence of enhanced M2-like macrophage responses correlates with increased primary and latent HSV-1 infection. PLOS Pathog. 2020;16(10):e1008971. https://doi.org/10.1371/journal.ppat.1008971 PMid:33031415 DOI: https://doi.org/10.1371/journal.ppat.1008971
Ni C, Yang L, Xu Q, Yuan H, Wang W, Xia W, et al. CD68- and CD163-positive tumor infiltrating macrophages in non-metastatic breast cancer: A retrospective study and meta-analysis. J Cancer. 2019;10(19):4463-72. https://doi.org/10.7150/jca.33914 PMid:31528210 DOI: https://doi.org/10.7150/jca.33914
Jimenez-Duran G, Luque-Martin R, Patel M, Koppe E, Bernard S, Sharp C, et al. Pharmacological validation of targets regulating CD14 during macrophage differentiation. EBioMedicine. 2020;61:103039. DOI: https://doi.org/10.1016/j.ebiom.2020.103039
Cheng H, Wang Z, Fu L, Xu T. Macrophage polarization in the development and progression of ovarian cancers: An overview. Front Oncol. 2019;9:421. DOI: https://doi.org/10.3389/fonc.2019.00421
Rahat MA, Hemmerlein B. Macrophage-tumor cell interactions regulate the function of nitric oxide. Front Physiol. 2013;4:144. PMid:23785333 DOI: https://doi.org/10.3389/fphys.2013.00144
Lecoultre M, Dutoit V, Walker PR. Phagocytic function of tumor-associated macrophages as a key determinant of tumor progression control: A review. J Immunother Cancer. 2020;8(2):e001408. https://doi.org/10.1136/jitc-2020-001408 PMid:33335026 DOI: https://doi.org/10.1136/jitc-2020-001408
Ciucci A, Zannoni GF, Buttarelli M, Martinelli E, Mascilini F, Petrillo M, et al. Ovarian low and high grade serous carcinomas: hidden divergent features in the tumor microenvironment. Oncotarget. 2016;7(42):68033-43. https://doi.org/10.18632/ oncotarget.10797 PMid:27462782 DOI: https://doi.org/10.18632/oncotarget.10797
Duan Z, Luo Y. Targeting macrophages in cancer immunotherapy. Signal Transduct Target Ther. 2021;6(1):127. https://doi.org/10.1038/s41392-021-00506-6 PMid:33767177 DOI: https://doi.org/10.1038/s41392-021-00506-6
Ruytinx P, Proost P, Van Damme J, Struyf S. Chemokine-induced macrophage polarization in inflammatory conditions. Front Immunol. 2018;9:1930. https://doi.org/10.3389/fimmu.2018.01930 PMid:30245686 DOI: https://doi.org/10.3389/fimmu.2018.01930
Atri C, Guerfali FZ, Laouini D. Role of human macrophage polarization in inflammation during infectious diseases. Int J Mol Sci. 2018;19(6):1801. https://doi.org/10.3390/ijms19061801 PMid:29921749 DOI: https://doi.org/10.3390/ijms19061801
Downloads
Published
How to Cite
License
Copyright (c) 2022 Elvan Wiyarta, Kusmardi Kusmardi, Aryo Tedjo, Hadi Sunaryo (Author)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
http://creativecommons.org/licenses/by-nc/4.0
Funding data
-
Universitas Indonesia
Grant numbers 30671953