A Systematic Review and Meta-analysis of Randomized Placebo-controlled Trials 1 Year after Starting Sodium-glucose Transporter-2 Inhibitors in Heart Failure Patients with Reduced Ventricular Ejection Fraction

Authors

DOI:

https://doi.org/10.3889/oamjms.2022.8017

Keywords:

Sodium-glucose transporter-2 inhibitors, Heart failure, Reduced ventricular ejection fraction

Abstract

Introduction: The Sodium-Glucose Cotransporter-2 Inhibitor (SGLT-2 inhibitor) is a diabetic medication. Recently, there has been enough evidence of SGLT-2 inhibitors in type 2 diabetes mellitus, driving in an abatement in cardiovascular breakdown hospitalization. To explore SGLT-2 inhibitor in cardiovascular breakdown with lower discharge portion, we led an orderly survey and meta-examination. Strategies: We played out a methodical writing search from various electronic databases. We used keywords:” SGLT-2 inhibitor '' and “Heart Failure.” Inclusion criteria are randomized placebo-controlled trial, one-year follow-up and ejection fraction 40% or less. Composite endpoint is cardiovascular mortality with hospitalization of heart failure. Individual outcomes include all-cause mortality, cardiovascular passing, and cardiovascular breakdown hospitalization. For low heterogeneity scores, results are introduced utilizing a danger proportion (RR) with a 95 percent certainty stretch and statistical analysis using a fixed-effect model.

Results: Total of two randomized control trial was selected (DAPA-HF [Dapagliflozin] and EMPEROR-Reduced [Empagliflozin]) with 8,474 patients pooled within our analysis. The results of the composite outcome compared SGLT-2 inhibitor with placebo had significant decrease in the composite of cardiovascular passing with hospitalization of cardiovascular breakdown (RR=0.78 [95% CI, 0.71–0.84], p<0.00001; I2=0%). Result of individual outcome showed significant reduction of all-cause mortality (RR=0.88 [95% CI, 0.79 – 0.98], p=0.03; I2=1%), cardiovascular mortality (RR=0.87 [95% CI, 0.77 – 0.99], p=0.03; I2=0%) and hospitalization of heart failure (RR=0.72 [95% CI, 0.65–0.81], p<0.00001; I2=0%). Conclusion: Within one year of treatment with an SGLT-2 inhibitor, the composite of cardiovascular passing with cardiovascular breakdown hospitalization, all-cause mortality, cardiovascular mortality, and cardiovascular breakdown hospitalization was significantly reduced.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

Neal B, Perkovic V, Mahaffey KW, De Zeeuw D, Fulcher G, Erondu N, et al. Canagliflozin and cardiovascular and renal events in Type 2 diabetes. N Engl J Med. 2017;377(7):644-57. https://doi.org/10.1056/NEJMoa1611925 PMid:28605608 DOI: https://doi.org/10.1056/NEJMoa1611925

Kato ET, Silverman MG, Mosenzon O, Zelniker TA, Cahn A, Furtado RH, et al. Effect of dapagliflozin on heart failure and mortality in Type 2 diabetes mellitus. Circulation. 2019;139(22):2528-36. https://doi.org/10.1161/CIRCULATIONAHA.119.040130 PMid:30882238 DOI: https://doi.org/10.1161/CIRCULATIONAHA.119.040130

Zinman B, Wanner C, Lachin JM, Fitchett D, Bluhmki E, Hantel S, et al. Empagliflozin, cardiovascular outcomes, and mortality in Type 2 diabetes. N Engl J Med. 2015;373(22):2117-28. https://doi.org/10.1056/NEJMoa1504720 PMid:26378978 DOI: https://doi.org/10.1056/NEJMoa1504720

McMurray JJ, Solomon SD, Inzucchi SE, Køber L, Kosiborod MN, Martinez FA, et al. Dapagliflozin in patients with heart failure and reduced ejection fraction. N Engl J Med. 2019;381(21):1995-2008. https://doi.org/10.1056/NEJMoa1911303 PMid:31535829 DOI: https://doi.org/10.1056/NEJMoa1911303

Packer M, Anker SD, Butler J, Filippatos G, Pocock SJ, Carson P, et al. Cardiovascular and renal outcomes with empagliflozin in heart failure. Ne Engl J Med. 2020;383(15):1413-24. https://doi.org/10.1056/NEJMoa2022190. PMid:32865377 DOI: https://doi.org/10.1056/NEJMoa2022190

Mazidi M, Rezaie P, Gao HK, Kengne AP. Effect of sodiumglucose cotransport‐2 inhibitors on blood pressure in people with Type 2 diabetes mellitus: A systematic review and metaanalysis of 43 randomized control trials with 22 528 patients. J Am Heart Assoc. 2017;6(6):e004007. https://doi.org/10.1161/JAHA.116.004007 PMid:28546454 DOI: https://doi.org/10.1161/JAHA.116.004007

Ferrannini E, Mark M, Mayoux E. CV protection in the EMPAREG OUTCOME trial: A “thrifty substrate” hypothesis. Diabetes Care. 2016;39(7):1108-14. https://doi.org/10.2337/dc16-0330 PMid:27289126 DOI: https://doi.org/10.2337/dc16-0330

Weber MA, Mansfield TA, Cain VA, Iqbal N, Parikh S, Ptaszynska A. Blood pressure and glycaemic effects of dapagliflozin versus placebo in patients with type 2 diabetes on combination antihypertensive therapy: A randomised, double-blind, placebo-controlled, phase 3 study. Lancet Diabetes Endocrinol. 2016;4(3):211-20. https://doi.org/10.1016/S2213-8587(15)00417-9 PMid:26620248 DOI: https://doi.org/10.1016/S2213-8587(15)00417-9

Lopaschuk GD, Ussher JR, Folmes CD, Jaswal JS, Stanley WC. Myocardial fatty acid metabolism in health and disease. Physiol Rev. 2010;90(1):207-58. https://doi.org/10.1152/physrev.00015.2009 PMid:20086077 DOI: https://doi.org/10.1152/physrev.00015.2009

Wang W, Zhang L, Battiprolu PK, Fukushima A, Nguyen K, Milner K, et al. Malonyl CoA decarboxylase inhibition improves cardiac function post-myocardial infarction. JACC Basic Transl Sci. 2019;4(3):385-400. https://doi.org/10.1016/j.jacbts.2019.02.003 PMid:31312761 DOI: https://doi.org/10.1016/j.jacbts.2019.02.003

Al Jobori H, Daniele G, Adams J, Cersosimo E, Triplitt C, DeFronzo RA, et al. Determinants of the increase in ketone concentration during SGLT2 inhibition in NGT, IFG and T2DM patients. Diabetes Obes Metab. 2017;19(6):809-13. https://doi.org/10.1111/dom.12881 PMid:28128510 DOI: https://doi.org/10.1111/dom.12881

Ferrannini E, Baldi S, Frascerra S, Astiarraga B, Barsotti E, Clerico A, Muscelli E. Renal handling of ketones in response to sodium-glucose cotransporter 2 inhibition in patients with Type 2 diabetes. Diabetes Care. 2017;40(6):771-6. https://doi.org/10.2337/dc16-2724 PMid:28325783 DOI: https://doi.org/10.2337/dc16-2724

Mudaliar S, Alloju S, Henry RR. Can a shift in fuel energetics explain the beneficial cardiorenal outcomes in the EMPA-REG OUTCOME study? A unifying hypothesis. Diabetes Care. 2016;39(7):1115-22. https://doi.org/10.2337/dc16-0542 PMid:27289124 DOI: https://doi.org/10.2337/dc16-0542

Verma S, Rawat S, Ho KL, Wagg CS, Zhang L, Teoh H, et al. Empagliflozin increases cardiac energy production in diabetes: Novel translational insights into the heart failure benefits of SGLT2 inhibitors. JACC Basic Transl Sci. 2018;3(5):575-87. https://doi.org/10.1016/j.jacbts.2018.07.006 PMid:30456329 DOI: https://doi.org/10.1016/j.jacbts.2018.07.006

Nielsen R, Møller N, Gormsen LC, Tolbod LP, Hansson NH, Sorensen J, et al. Cardiovascular effects of treatment with the ketone body 3-hydroxybutyrate in chronic heart failure patients. Circulation. 2019;139(18):2129-41. https://doi.org/10.1161/CIRCULATIONAHA.118.036459 PMid:30884964 DOI: https://doi.org/10.1161/CIRCULATIONAHA.118.036459

Perkovic V, Jardine MJ, Neal B, Bompoint S, Heerspink HJ, Charytan DM, et al. Canagliflozin and renal outcomes in Type 2 diabetes and nephropathy. N Engl J Med. 2019;380(24):2295-306. https://doi.org/10.1056/NEJMoa1811744 PMid:30990260 DOI: https://doi.org/10.1056/NEJMoa1811744

Dick SA, Epelman S. Chronic heart failure and inflammation: What do we really know? Circ Res. 2016;119(1):159-76. https://doi.org/10.1161/CIRCRESAHA.116.308030 PMid:27340274 DOI: https://doi.org/10.1161/CIRCRESAHA.116.308030

Fu M. Inflammation in chronic heart failure: What is familiar, what is unfamiliar? Eur J Heart Fail. 2009;11(2):111-2. https://doi.org/10.1093/eurjhf/hfn039 PMid:19168507 DOI: https://doi.org/10.1093/eurjhf/hfn039

Heerspink HJ, Perco P, Mulder S, Leierer J, Hansen MK, Heinzel A, et al. Canagliflozin reduces inflammation and fibrosis biomarkers: A potential mechanism of action for beneficial effects of SGLT2 inhibitors in diabetic kidney disease. Diabetologia. 2019;62(7):1154-66. https://doi.org/10.1007/s00125-019-4859-4 PMid:31001673 DOI: https://doi.org/10.1007/s00125-019-4859-4

Iannantuoni F, de Marañon AM, Diaz-Morales N, Falcon R, Bañuls C, Abad-Jimenez Z, et al. The SGLT2 inhibitor empagliflozin ameliorates the inflammatory profile in Type 2 diabetic patients and promotes an antioxidant response in leukocytes. J Clin Med. 2019;8(11):1814. https://doi.org/10.3390/jcm8111814 PMid:31683785 DOI: https://doi.org/10.3390/jcm8111814

Lee TM, Chang NC, Lin SZ. Dapagliflozin, a selective SGLT2 Inhibitor, attenuated cardiac fibrosis by regulating the macrophage polarization via STAT3 signaling in infarcted rat hearts. Free Radic Biol Med. 2017;104:298-310. https://doi.org/10.1016/j.freeradbiomed.2017.01.035 PMid:28132924 DOI: https://doi.org/10.1016/j.freeradbiomed.2017.01.035

Lim VG, Bell RM, Arjun S, Kolatsi-Joannou M, Long DA, Yellon DM. SGLT2 inhibitor, canagliflozin, attenuates myocardial infarction in the diabetic and nondiabetic heart. JACC Basic Transl Sci. 2019;4(1):15-26. https://doi.org/10.1016/j.jacbts.2018.10.002 PMid:30847415 DOI: https://doi.org/10.1016/j.jacbts.2018.10.002

Baartscheer A, Schumacher CA, Wüst RC, Fiolet JW, Stienen GJ, Coronel R, et al. Empagliflozin decreases myocardial cytoplasmic Na+ through inhibition of the cardiac Na+/H+ exchanger in rats and rabbits. Diabetologia. 2017;60(3):568-73. https://doi.org/10.1007/s00125-016-4134-x PMid:27752710 DOI: https://doi.org/10.1007/s00125-016-4134-x

Chino Y, Samukawa Y, Sakai S, Nakai Y, Yamaguchi JI, Nakanishi T, et al. SGLT2 inhibitor lowers serum uric acid through alteration of uric acid transport activity in renal tubule by increased glycosuria. Biopharm Drug Dispos. 2014;35(7):391-404. PMid:25044127 DOI: https://doi.org/10.1002/bdd.1909

Singh JS, Mordi IR, Vickneson K, Fathi A, Donnan PT, Mohan M, et al. Dapagliflozin versus placebo on left ventricular remodeling in patients with diabetes and heart failure: The REFORM trial. Diabetes Care. 2020;43(6):1356-9. https://doi.org/10.2337/dc19-2187 PMid:32245746 DOI: https://doi.org/10.2337/dc19-2187

Brown AJ, Gandy S, McCrimmon R, Houston JG, Struthers AD, Lang CC. A randomized controlled trial of dapagliflozin on left ventricular hypertrophy in people with type two diabetes: The DAPA-LVH trial. Eur Heart J. 2020;41(36):3421-32. https://doi.org/10.1093/eurheartj/ehaa419 PMid:32578850 DOI: https://doi.org/10.1093/eurheartj/ehaa419

Downloads

Published

2022-01-09

How to Cite

1.
Adji AS, Billah A, Baraja A, Putri AAP, Rahman FS. A Systematic Review and Meta-analysis of Randomized Placebo-controlled Trials 1 Year after Starting Sodium-glucose Transporter-2 Inhibitors in Heart Failure Patients with Reduced Ventricular Ejection Fraction. Open Access Maced J Med Sci [Internet]. 2022 Jan. 9 [cited 2024 Nov. 21];10(F):1-6. Available from: https://oamjms.eu/index.php/mjms/article/view/8017

Issue

Section

Meta-analytic Review Article

Categories