Association of Hair Zinc Level with Cognitive and Language Delays in Children Aged 9–24 Months Old

Authors

  • Ayu Diah Perdana Paramita Department of Pediatric, Medical School of Udayana University, Sanglah Hospital, Denpasar, Indonesia
  • I G. A. N. Sugitha Adnyana Department of Pediatric, Medical School of Udayana University, Sanglah Hospital, Denpasar, Indonesia
  • Ida Bagus Subanada Department of Pediatric, Medical School of Udayana University, Sanglah Hospital, Denpasar, Indonesia
  • I Gusti Ngurah Made Suwarba Department of Pediatric, Medical School of Udayana University, Sanglah Hospital, Denpasar, Indonesia https://orcid.org/0000-0003-2167-7339
  • Eka Gunawijaya Department of Pediatric, Medical School of Udayana University, Sanglah Hospital, Denpasar, Indonesia
  • Dyah Kanya Wati Department of Pediatric, Medical School of Udayana University, Sanglah Hospital, Denpasar, Indonesia

DOI:

https://doi.org/10.3889/oamjms.2022.8022

Keywords:

Children, Cognitive and language development, Zinc

Abstract

Background: The delay in cognitive and language development can be caused by multifactor, including chronic deficiency of micronutrient, zinc. Level of zinc serum is influenced by food intake which can cause bias. There are inconsistencies in previous studies between zinc levels and the development caused by differences of sample or subjects. This study using hair as sample in analyzing the association between zinc level on cognitive and language delays in children aged 9-24 months old.

AIM: To find out that low hair zinc level is associated with delayed of cognitive and language development in children 9-24 months old.

 

Method: This analytical observational study with case-control design. Case group consisted of 69 children with cognitive and language development delays, based on CAT/CLAMS scores < 85 subjects aged 9-24 months meanwhile the control group consist of 69 children with normal cognitive and language development. Chi-square test was used to assess the association between zinc levels and the incidence of cognitive and language delays. Multivariate analysis was performed by logistic regression.

Results: Univariate analysis showed no association between low zinc level and delayed of cognitive and language development in children aged 9-24 months (OR 1.263; 95% CI 0.64-2.46; p=0.495). Logistic regression was performed for other variables and screen time > 2 hours and lack of stimulation were risk factors for cognitive and language development delays (adjusted OR 2.78; 95% CI 1,284-6.058; p=0.010 and adjusted OR 3.96; 95% CI 1.833-8.581; p<0.001).

Conclusion: There is no relationship between low hair zinc level and delays in cognitive  and  language  development  in  children  age 9-24  months,  but  there  is an association between screen time more than two hours per day and lack of stimulation with delays in cognitive and language development in children 9-24 months 24 months.

 

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

American Academy of Pediatrics. Developmental surveillance and screening of infants and young children. Pediatrics. 2001;108(1):192-6. https://doi.org/10.1542/peds.108.1.192 PMid:11433077 DOI: https://doi.org/10.1542/peds.108.1.192

Scheffler F, Vogel D, Astern R, Burgess J, Conneally RT, Salerno K. Screening for Communication and Cognitive Disorders in Infants and Toddlers. Pediatr Nurs. 2008;33(6):473-80. PMid:18196710

Soedjatmiko. Early detection of toddler developmental disorders. Sari Pediatr. 2001;3(3):175-88. DOI: https://doi.org/10.14238/sp3.3.2001.175-88

Windiani IG, Soetjiningsih. Assessment of CAT (cognitive adaptive test)/CLAMS (clinical linguistic and auditory milestone scale) in children at Werdhi Kumara I child care center Denpasar. Sari Pediatr. 2010;12(4):228-32. DOI: https://doi.org/10.14238/sp12.4.2010.228-32

Busari JO, Weggelaar NM. How to investigate and manage the child who is slow to speak sources and selection criteria. BMJ. 2004;328:272-6. https://doi.org/10.1136/bmj.328.7434.272 PMid:14751899 DOI: https://doi.org/10.1136/bmj.328.7434.272

Hartanto F, Selina H, Zuhriah H, Fitra S. The influence of language development in cognitive development of children aged 1-3 years old. Sari Pediatr. 2011;12(6):386-90. DOI: https://doi.org/10.14238/sp12.6.2011.386-90

Health Ministry Republic of Indonesia. Regulation of the Minister of Health of the Republic of Indonesia Number 66 of 2014 concerning Monitoring of Child Growth, Development, and Developmental Disorders. Jakarta: Health Ministry Republic of Indonesia; 2014.

Dhamayanti M, Herlina M. Screening for cognitive and language disorders using the Capute scale (cognitive adaptive test/clinical linguistic and auditory milestone scale-cat/clams). Sari Pediatr. 2009;11(3):189-98. DOI: https://doi.org/10.14238/sp11.3.2009.189-98

Alves-Rodrigues A, Shao A. The science behind lutein. Toxicol Lett. 2004;150(1):57-83. https://doi.org/10.1016/j.toxlet.2003.10.031 PMid:15068825 DOI: https://doi.org/10.1016/j.toxlet.2003.10.031

Georgieff MK. Nutrition and the developing brain: Nutrient priorities and measurement. Am J Clin Nutr. 2007;85(2):614S-20S. https://doi.org/10.1093/ajcn/85.2.614S PMid:17284765

Lien EL, Hammond BR. Nutritional influences on visual development and function. Prog Retin Eye Res. 2011;30(3):188- 203. https://doi.org/10.1016/j.preteyeres.2011.01.001 PMid:21296184 DOI: https://doi.org/10.1016/j.preteyeres.2011.01.001

Bhatnagar S, Taneja S. Zinc and cognitive development. Br J Nutr. 2001;85(S2):S139-45. https://doi.org/10.1079/bjn2000306 PMid:11509102 DOI: https://doi.org/10.1079/BJN2000306

Black M. The evidence linking zinc deficiency with children’s cognitive and motor functioning. J Nutr. 2003;133(1):1473-6. https://doi.org/10.1093/jn/133.5.1473S PMid:12730446 DOI: https://doi.org/10.1093/jn/133.5.1473S

Agustian L, Sembiring T, Ariani A. The role of zinc on children’s growth. Sari Pediatr. 2009;11(4):244-9. DOI: https://doi.org/10.14238/sp11.4.2009.244-9

Umamaheswari K, Bhaskaran M, Krishnamurthy G, Vasudevan H, Vasudevan K. Effect of iron and zinc deficiency on short term memory in children. Indian Pediatr. 2011;48(4):289-93. https://doi.org/10.1007/s13312-011-0060-7 PMid:20972302 DOI: https://doi.org/10.1007/s13312-011-0060-7

Takeda A. Significance of Zn2+ signaling in cognition: Insight from synaptic Zn2+ dyshomeostasis. J Trace Elem Med Biol. 2014;28(4):393-6. https://doi.org/10.1016/j.jtemb.2014.06.021 PMid:25049058 DOI: https://doi.org/10.1016/j.jtemb.2014.06.021

Sandstead HH. Causes of iron and zinc deficiencies and their effects on brain. J Nutr. 2000;130 Suppl 2S:347S-9S. https://doi.org/10.1093/jn/130.2.347S PMid:10721903 DOI: https://doi.org/10.1093/jn/130.2.347S

Minami A, Takeda A, Yamaide R, Oku N. Relationship between zinc and neurotransmitters released into the amygdalar extracellular space. Brain Res. 2002;936(1-2):91-4. https://doi.org/10.1016/s0006-8993(02)02499-x PMid:11988235 DOI: https://doi.org/10.1016/S0006-8993(02)02499-X

Mayneris-Perxachs J, Swann JR. Metabolic phenotyping of malnutrition during the first 1000 days of life. Eur J Nutr. 2019;58(3):909-30. https://doi.org/10.1007/s00394-018-1679-0 PMid:29644395 DOI: https://doi.org/10.1007/s00394-018-1679-0

Herman S. The problem of Vitamin A deficiency (VAC) and prospects for overcoming it. Health R D Med. 2012;17(4):40-4.

King J., Brown KH, Gibson RS, Krebs NF, Lowe NM, Siekmann JH, et al. Biomarkers of nutrition for development (BOND)-zinc review. J Nutr. 2016;146(4):858S-85S. https://doi.org/10.3945/jn.115.220079 PMid:26962190 DOI: https://doi.org/10.3945/jn.115.220079

International Zinc Nutrition Consultative Group (IZiNCG). Technical document. Food Nutr Bull. 2004;5 Suppl 2:94-200.

Meghrazi K, Sabet M., Kheradmand F, Akhgar M. A research on the level of zinc and copper in the hair of students with lower IQ. Zahedan J Res Med Sci. 2017;19(12):113-32. DOI: https://doi.org/10.5812/zjrms.11332

Joint Committee on Infant Hearing. Principles and guidelines for early hearing detection and intervention programs. Pediatrics. 2019;120:898-921. DOI: https://doi.org/10.1542/peds.2007-2333

American Academy of Pediatrics. Media and young minds. Pediatrics. 2016;138(5):1-6. DOI: https://doi.org/10.1542/peds.2016-2591

Canadian Pediatrics Association. Screen Time and Young Children: Promoting Health And Development in a Digital World. J Pediatr Child Health. 2017;22(8):461-8. DOI: https://doi.org/10.1093/pch/pxx123

Gofin R, Adler B, Palti H. Time trends of child development in a Jerusalem community. Paediatr Perinat Epidemiol. 1996;10(2):197-206. https://doi.org/10.1111/j.1365-3016.1996.tb00043.x PMid:8778692 DOI: https://doi.org/10.1111/j.1365-3016.1996.tb00043.x

Hidajati Z. “Faktor Risiko Disfasia Perkembangan Pada Anak”. Semarang: University of Diponegoro; 2009.

Lindsay G, Strand S. Children with language impairment: Prevalence, associated difficulties and ethnic disproportionality in an English population. Front Educ. 2016;1(2):1-14. DOI: https://doi.org/10.3389/feduc.2016.00002

Ko CH, Yen JY, Chen CC, Chen SH, Yen CF. Gender differences and related factors affecting online gaming addiction among Taiwanese adolescents. J Nerv Ment Dis. 2005;193(4):273-7. https://doi.org/10.1097/01.nmd.0000158373.85150.57 PMid:15805824 DOI: https://doi.org/10.1097/01.nmd.0000158373.85150.57

Anderson JW, Johnstone BM, Remley DT. Breast-feeding and cognitive development: A meta-analysis. Am J Clin Nutr.1999;70(4):525-35. https://doi.org/10.1093/ajcn/70.4.525 PMid:10500022 DOI: https://doi.org/10.1093/ajcn/70.4.525

Morrow-Tlucak M, Haude RH, Ernhart CB. Breastfeeding and cognitive development in the first 2 years of life. Soc Sci Med. 1988;26(6):635-9. https://doi.org/10.1016/0277-9536(88)90028-7 PMid:3363405 DOI: https://doi.org/10.1016/0277-9536(88)90028-7

Gardner JM, Powell CA, Baker-Henningham H, Walker SP, Cole TJ, Grantham-McGregor SM. Zinc supplementation and psychosocial stimulation: Effects on the development of undernourished Jamaican children. Am J Clin Nutr. 2005;82(2):399-405. https://doi.org/10.1093/ajcn.82.2.399 PMid:16087985 DOI: https://doi.org/10.1093/ajcn/82.2.399

Viana MB. Anemia and infection: A complex relationship. Rev Bras Hematol Hemoter. 2011;33(2):90-2. https://doi.org/10.5581/1516-8484.20110024 PMid:23284251 DOI: https://doi.org/10.5581/1516-8484.20110024

Sherman E, Brooks B, Clymont T, McAllister W. Detecting epilepsy related cognitive problems in clinically refered children with epilepsy: Is the WISC-IV A useful tool? Epilepsia. 2012;53(6):1060-6. https://doi.org/10.1111/j.1528-1167.2012.03493.x PMid:22554239 DOI: https://doi.org/10.1111/j.1528-1167.2012.03493.x

Ozkan M, Senel S, Arslan E, Karacan C. The socioeconomic and biological risk factors for developmental delay in early childhood. Eur J Pediatr. 2012;171(12):1815-21. https://doi.org/10.1007/s00431-012-1826-1 PMid:22983025 DOI: https://doi.org/10.1007/s00431-012-1826-1

Zhang J, Guo S, Li Y, Wei Q, Zhang C, Wang X, et al. Factors influencing developmental delay among young children in poor rural china: A latent variable approach. BMJ Open. 2018;8(8):e021628. https://doi.org/10.1136/bmjopen-2018-021628 PMid:30173158 DOI: https://doi.org/10.1136/bmjopen-2018-021628

Anwar K, Hardinsyah H, Damayanthi E, Sukandar D. Probability method for analyzing the prevalence of calcium, iron, zinc, and Vitamin D deficiencies among Indonesian adolescent. J Gizi Pangan. 2018;13(2):93-102. DOI: https://doi.org/10.25182/jgp.2018.13.2.93-102

Castillo-Duran C, Perales CG, Hertrampf ED, Marin VB, Rivera FA, Icaza G. Effect of zinc supplementation on development and growth of Chilean infants. J Pediatr. 2001;138(2):229-35. https://doi.org/10.1067/mpd.2001.110530 PMid:11174621 DOI: https://doi.org/10.1067/mpd.2001.110530

Takeda A, Hirate M, Tamano H, Oku N. Release of glutamate and GABA in the hippocampus under zinc deficiency. J Neurosci Res. 2003;72(4):537-42. https://doi.org/10.1002/jnr.10600 PMid:12704815 DOI: https://doi.org/10.1002/jnr.10600

Friel JK, Andrews WL, Matthew JD, Long DR, Cornel AM, Cox M, et al. Zinc supplementation in very low birth weight infants. J Pediatr Gastroenterol Nutr. 1993;17(1):97-104. https://doi.org/10.1097/00005176-199307000-00015 PMid:8350219 DOI: https://doi.org/10.1097/00005176-199307000-00015

Flora R, Fajar NA, Febry F, Yuliana I, Yuliarti Y. Zinc intake, zinc serum levels, and intelligence in school children in rural areas. Open Access Maced J Med Sci. 2021;25(9):394-7. DOI: https://doi.org/10.3889/oamjms.2021.5869

Chaudhary J, Jora R, Sharma P, Gehlot R, Sushil. A study of iron and zinc deficiency on short term memory in children and effect of their supplementation. Asian J Biomed Pharm Sci. 2015;5(42):12-5. DOI: https://doi.org/10.15272/ajbps.v5i42.664

Khodashenas E, Mohammadzadeh A, Sohrabi M, Izanloo A. The effect of zinc supplementation on cognitive performance in schoolchildren. Int J Pediatr. 2015;3(23):1033-8.

Hambidge KM, Hambidge C, Jacobs M, Baum JD. Low levels of zinc in hair, anorexia, poor growth, and hypogeusia in children. Pediatr Res. 1972;6(12):868-74. https://doi.org/10.1203/00006450-197212000-00003 PMid:4509185 DOI: https://doi.org/10.1203/00006450-197212000-00003

Gibson RS, DeWolfe MS. The zinc, copper, manganese, vanadium, and iodine content of hair from 38 Canadian neonates. Pediatr Res. 1979;13(9):959-62. https://doi.org/10.1203/00006450-197909000-00001 PMid:503662 DOI: https://doi.org/10.1203/00006450-197909000-00001

Sandusky-Beltran LA, Manchester BL, McNay EC. Supplementation with zinc in rats enhances memory and reverses an age-dependent increase in plasma copper. Behav Brain Res. 2017;333:179-83. https://doi.org/10.1016/j.bbr.2017.07.007 PMid:28693861 DOI: https://doi.org/10.1016/j.bbr.2017.07.007

Duch H, Fisher EM, Ensari I, Font M, Harrington A, Taromino C, et al. Association of screen time use and language development in Hispanic toddlers: A cross-sectional and longitudinal study. Clin Pediatr (Phila). 2013;52(9):857-65. https://doi.org/10.1177/0009922813492881 PMid:23820003 DOI: https://doi.org/10.1177/0009922813492881

Zhang Z, Adamo K, Ogden N, Goldfield GS, Okely AD, Kuzik N, et al. Associations between screentime and cognitive development in preschoolers. Pediatr Child Health. 2021;41(3):351-60. DOI: https://doi.org/10.1093/pch/pxab067

Madigan S, Browne D, Racine N, Mori C, Tough S. Associaton between screen time and children’s performance on a developmental screening test. JAMA Pediatr. 2019;173(3):244-50. https://doi.org/10.1001/jamapediatrics.2018.5056 PMid:30688984 DOI: https://doi.org/10.1001/jamapediatrics.2018.5056

Downloads

Published

2022-02-06

How to Cite

1.
Paramita ADP, Adnyana IGANS, Subanada IB, Suwarba IGNM, Gunawijaya E, Wati DK. Association of Hair Zinc Level with Cognitive and Language Delays in Children Aged 9–24 Months Old. Open Access Maced J Med Sci [Internet]. 2022 Feb. 6 [cited 2024 Nov. 22];10(B):482-8. Available from: https://oamjms.eu/index.php/mjms/article/view/8022