Distinct Secretion of MUC5AC and MUC5B in Upper and Lower Chronic Airway Diseases
DOI:
https://doi.org/10.3889/oamjms.2022.8060Keywords:
MUC5AC/MUC5B hypersecretion, Goblet cell hyperplasia, Submucosal gland hypertrophy, Chronic airway diseases, Mechanisms/pathwaysAbstract
The human airway is protected by a defensive mucus barrier. The most prominent components of mucus are the mucin glycoproteins MUC5AC and MUC5B. They are produced by goblet cells and submucosal gland cells in the upper and lower airways. Hyperplasia of these cells and hypersecretion of MUC5AC and MUC5B characterize chronic inflammatory diseases of the upper and lower airways. Recent studies have revealed that MUC5AC and MUC5B are expressed at specific sites in the respiratory tract through different molecular mechanisms and have distinct functions. Morphometric and histochemical studies have also examined the roles of goblet cells, submucosal gland cells, MUC5AC, and MUC5B in different chronic airway diseases individually. The individual study of goblet cells, submucosal gland cells, MUC5AC, and MUC5B in airway diseases would be helpful for precisely diagnosing chronic inflammatory diseases of the airway and establishing optimal treatments. This review focuses on the distinct secretion of MUC5AC and MUC5B and their producing cells in chronic inflammatory diseases of the upper and lower airway.
Downloads
Metrics
Plum Analytics Artifact Widget Block
References
Boucher RC. Muco-obstructive lung diseases. N Engl J Med. 2019;380(20):1941-53. https://doi.org/10.1056/NEJMra1813799 PMid:31091375 DOI: https://doi.org/10.1056/NEJMra1813799
Murrison LB, Brandt EB, Myers JB, Hershey GK. Environmental exposures and mechanisms in allergy and asthma development. J Clin Invest. 2019;129(4):1504-15. https://doi.org/10.1172/JCI124612 PMid:30741719 DOI: https://doi.org/10.1172/JCI124612
Fahy JV, Dickey BF. Airway mucus function and dysfunction. N Engl J Med. 2010;363(23):2233-47. https://doi.org/10.1056/NEJMra0910061 PMid:21121836 DOI: https://doi.org/10.1056/NEJMra0910061
Kesimer M, Ford AA, Ceppe A, Radicioni G, Cao R, Davis CW. Airway mucin concentration as a marker of chronic bronchitis. N Engl J Med. 2017;377(10):911-22. https://doi.org/10.1056/NEJMoa1701632 PMid:28877023 DOI: https://doi.org/10.1056/NEJMoa1701632
Tam A, Wadsworth S, Dorscheid D, Man SF, Sin DD. The airway epithelium: More than just a structural barrier. Ther Adv Respir Dis. 2011;5(4):255-73. https://doi.org/10.1177/1753465810396539 PMid:21372121 DOI: https://doi.org/10.1177/1753465810396539
Lang T, Klasson S, Larsson E, Johansson ME, Hansson GC, Samuelsson T. Searching the evolutionary origin of epithelial mucus protein components-mucins and FCGBP. Mol Biol Evol. 2016;33(8):1921-36. https://doi.org/10.1093/molbev/msw066 PMid:27189557 DOI: https://doi.org/10.1093/molbev/msw066
Hattrup CL, Gendler SJ. Structure and function of the cell surface (tethered) mucins. Annu Rev Physiol. 2008;70:431-57. https://doi.org/10.1146/annurev.physiol.70.113006.100659 PMid:17850209 DOI: https://doi.org/10.1146/annurev.physiol.70.113006.100659
Okuda K, Chen G, Subramani DB, Wolf M, Gilmore RC, Kato T, et al. Localization of secretory mucins MUC5AC and MUC5B in normal/healthy human airways. Am J Respir Crit Care Med. 2019;199(6):715-27. https://doi.org/10.1164/rccm.201804-0734OC PMid:30352166 DOI: https://doi.org/10.1164/rccm.201804-0734OC
Lachowicz-Scroggins ME, Yuan S, Kerr SC, Dunican EM, Yu M, Carrington SD, et al. Abnormalities in MUC5AC and MUC5B protein in airway mucus in asthma. Am J Respir Crit Care Med. 2016;194(10):1296-9. https://doi.org/10.1164/rccm.201603-0526LE PMid:27845589 DOI: https://doi.org/10.1164/rccm.201603-0526LE
Rose MC, Voynow JA. Respiratory tract mucin genes and mucin glycoproteins in health and disease. Physiol Rev. 2016;86(1):245-78. https://doi.org/10.1152/physrev.00010.2005 PMid:16371599 DOI: https://doi.org/10.1152/physrev.00010.2005
Roy MG, Livraghi-Butrico A, Fletcher AA, McElwee MM, Evans SE, Boerner RM, et al. Muc5b is required for airway defence. Nature. 2014;505(7483):412-6. https://doi.org/10.1038/nature12807 PMid:24317696 DOI: https://doi.org/10.1038/nature12807
Koeppen M, McNamee EN, Brodsky KS, Aherne CM, Faigle M, Downey GP, et al. Detrimental role of the airway mucin Muc5ac during ventilator-induced lung injury. Mucosal Immunol. 2013;6(4):762-75. https://doi.org/10.1038/mi.2012.114 PMid:23187315 DOI: https://doi.org/10.1038/mi.2012.114
Bansil R, Turner BS. The biology of mucus: Composition, synthesis and organization. Adv Drug Deliv Rev. 2018;124:3-15. https://doi.org/10.1016/j.addr.2017.09.023 PMid:28970050 DOI: https://doi.org/10.1016/j.addr.2017.09.023
Schachter H, Williams D. Biosynthesis of mucus glycoproteins. In: Chantler EN, Elder JB, Elstein M, editors. Mucus in Health and Disease-II. Advances in Experimental Medicine and Biology. Boston, MA: Springer; 1982. p. 3-4. https://doi.org/10.1007/978-1-4615-9254-9_1 DOI: https://doi.org/10.1007/978-1-4615-9254-9_1
Jaramillo AM, Azzegagh Z, Tuvim MJ, Dickey BF. Airway mucin secretion. Ann Am Thorac Soc. 2018;15(3):S164-70. https://doi.org/10.1513/AnnalsATS.201806-371AW PMid:30431339 DOI: https://doi.org/10.1513/AnnalsATS.201806-371AW
Wedzicha JA. Airway mucins in chronic obstructive pulmonary disease. N Engl J Med. 2017;377(10):986-7. https://doi.org/10.1056/NEJMe1707210 PMid:28877010 DOI: https://doi.org/10.1056/NEJMe1707210
Fixman ED, Stewart A, Martin JG. Basic mechanisms of development of airway structural changes in asthma. Eur Respir J. 2007;29(2):379-89. https://doi.org/10.1183/09031936.00053506 PMid:17264325 DOI: https://doi.org/10.1183/09031936.00053506
Shaykhiev R. Emerging biology of persistent mucous cell hyperplasia in COPD. Thorax. 2019;74(1):4-6. https://doi.org/10.1136/thoraxjnl-2018-212271 PMid:30266881 DOI: https://doi.org/10.1136/thoraxjnl-2018-212271
Hays SR, Fahy JV. Characterizing mucous cell remodeling in cystic fibrosis: Relationship to neutrophils. Am J Respir Crit Care Med. 2006;174(1):1018-24. https://doi.org/10.1164/rccm.200603-310OC PMid:16917116 DOI: https://doi.org/10.1164/rccm.200603-310OC
Hogg JC. Pathophysiology of airflow limitation in chronic obstructive pulmonary disease Lancet. 2004;364(9435):709-21. https://doi.org/10.1016/S0140-6736(04)16900-6 PMid:15325838 DOI: https://doi.org/10.1016/S0140-6736(04)16900-6
Hopkins C. Chronic rhinosinusitis with nasal polyps. N Engl J Med. 2019;381(4):55-63. https://doi.org/10.1056/NEJMcp1800215 PMid:31269366 DOI: https://doi.org/10.1056/NEJMcp1800215
Samitas K, Carter A, Kariyawasam HH, Xanthou G. Upper and lower airway remodelling mechanisms in asthma. Allergic rhinitis and chronic rhinosinusitis: The one airway concept revisited. Allergy. 2018;73:993-1002. https://doi.org/10.1111/all.13373 PMid:29197105 DOI: https://doi.org/10.1111/all.13373
Wu X, Amorn MM, Aujla PK, Rice S, Mimms R, Watson AM, et al. Histologic characteristics and mucin immunohistochemistry of cystic fibrosis sinus mucosa. Arch Otolaryngol Head Neck Surg. 2011;137(5):383-9. https://doi.org/10.1001/archoto.2011.34 PMid:21502478 DOI: https://doi.org/10.1001/archoto.2011.34
Chan KH, Abzug MJ, Coffinet L, Simoes EA, Cool C, Liu AH. Chronic rhinosinusitis in young children differs from adults: A histopathology study. J Pediatr. 2004;144(2):206-12. https://doi.org/10.1016/j.jpeds.2003.11.009 PMid:14760263 DOI: https://doi.org/10.1016/j.jpeds.2003.11.009
Viswanathan H, Brownlee IA, Pearson JP, Carrie S. MUC5B secretion is upregulated in sinusitis compared with controls. Am J Rhinol. 2006;20(5):554-7. https://doi.org/10.2500/ajr.2006.20.2935 PMid:17063754 DOI: https://doi.org/10.2500/ajr.2006.20.2935
Zhang Y, Derycke L, Holtappels G, Wang XD, Zhang L, Bachert C, et al. Th2 cytokines orchestrate the secretion of MUC5AC and MUC5B in IL-5-positive chronic rhinosinusitis with nasal polyps. Allergy. 2019;74(1):131-40. https://doi.org/10.1111/all.13489 PMid:29802623 DOI: https://doi.org/10.1111/all.13489
Lai X, Li X, Chang L, Chen X, Huang Z, Bao H, et al. IL-19 up-regulates mucin 5AC production in patients with chronic rhinosinusitis via STAT3 pathway. Front Immunol. 2019;10:1682. https://doi.org/10.3389/fimmu.2019.01682 PMid:31379870 DOI: https://doi.org/10.3389/fimmu.2019.01682
Ding GQ, Zheng CQ. The expression of MUC5AC and MUC5B mucin genes in the mucosa of chronic rhinosinusitis and nasal polyposis. Am J Rhinol. 2007;21(3):359-66. https://doi.org/10.2500/ajr.2007.21.3037 PMid:17621824 DOI: https://doi.org/10.2500/ajr.2007.21.3037
Kim DH, Chu HS, Lee JY, Hwang SJ, Lee SH, Lee HM. Up-regulation of MUC5AC and MUC5B mucin genes in chronic rhinosinusitis. Arch Otolaryngol Head Neck Surg. 2004;130(6):747-52. https://doi.org/10.1001/archotol.130.6.747 PMid:15210557 DOI: https://doi.org/10.1001/archotol.130.6.747
Tos M, Mogensen C. Mucus production in chronic maxillary sinusitis. A quantitative histopathological study. Acta Otolaryngol. 1984;97(1-2):151-9. https://doi.org/10.3109/00016488409130975 PMid:6689823 DOI: https://doi.org/10.3109/00016488409130975
Dykewicz MS, Rodrigues JM, Slavin RG. Allergic fungal rhinosinusitis. J Allerg Clin Immunol. 2018;142(2):341-51. https://doi.org/10.1016/j.jaci.2018.06.023 PMid:30080526 DOI: https://doi.org/10.1016/j.jaci.2018.06.023
Shah SA, Ishinaga H, Takeuchi K. Pathogenesis of eosinophilic chronic rhinosinusitis. J Inflamm (Lond). 2016;13:11. https://doi.org/10.1186/s12950-016-0121-8 PMid:27053925 DOI: https://doi.org/10.1186/s12950-016-0121-8
Cao PP, Li HB, Wang BF, Wang SB, You XJ, Cui YH, et al. Distinct immunopathologic characteristics of various types of chronic rhinosinusitis in adult Chinese. J Allergy Clin Immunol. 2009;124(3):478-84. https://doi.org/10.1016/j.jaci.2009.05.017 PMid:19541359 DOI: https://doi.org/10.1016/j.jaci.2009.05.017
Kay AB. Allergy and allergic diseases. Second of two parts. N Engl J Med. 2001;344(2):109-13. https://doi.org/10.1056/NEJM200101113440206 PMid:11150362 DOI: https://doi.org/10.1056/NEJM200101113440206
Wheatley LM, Togias A. Clinical practice. Allergic rhinitis. N Engl J Med. 2015;372(5):456-63. https://doi.org/10.1056/NEJMcp1412282 PMid:25629743 DOI: https://doi.org/10.1056/NEJMcp1412282
El-Sayed Ali M. Nasosinus mucin expression in normal and inflammatory conditions. Curr Opin Allergy Clin Immunol. 2009;9(1):10-5. https://doi.org/10.1097/ACI.0b013e32831d815c PMid:19532088 DOI: https://doi.org/10.1097/ACI.0b013e32831d815c
Thavagnanam S, Parker JC, McBrien ME, Skibinski G, Shields MD, Heaney LG. Nasal epithelial cells can act as a physiological surrogate for paediatric asthma studies. PLoS One. 2014;9(1):e85802. https://doi.org/10.1371/journal.pone.0085802 PMid:24475053 DOI: https://doi.org/10.1371/journal.pone.0085802
Murray AB, Anderson DO. The epidemiologic relationship of clinical nasal allergy to eosinophils and to goblet cells in the nasal smear. J Allergy. 1969;43(1):1-8. https://doi.org/10.1016/0021-8707(69)90014-8 PMid:5249196 DOI: https://doi.org/10.1016/0021-8707(69)90014-8
Bousquet J, Van Cauwenberge P, Khaltaev N, Aria Workshop Group World Health Organization. Allergic rhinitis and its impact on asthma. J Allergy Clin Immunol. 2001;108(5):S147-334. https://doi.org/10.1067/mai.2001.118891 PMid:11707753 DOI: https://doi.org/10.1067/mai.2001.118891
Eifan AO, Orban NT, Jacobson MR, Durham SR. Severe persistent allergic rhinitis. Inflammation but no histologic features of structural upper airway remodeling. Am J Respir Crit Care Med. 2015;192(12):1431-9. https://doi.org/10.1164/rccm.201502-0339OC PMid:26378625 DOI: https://doi.org/10.1164/rccm.201502-0339OC
Grainge CL, Lau LC, Ward JA, Dulay V, Lahiff G, Wilson S, et al. Effect of bronchoconstriction on airway remodeling in asthma. N Engl J Med. 2011;364(21):2006-15. https://doi.org/10.1056/NEJMoa1014350 PMid:21612469 DOI: https://doi.org/10.1056/NEJMoa1014350
Evans CM, Raclawska DS, Ttofali F, Liptzin DR, Fletcher AA, Harper DN, et al. The polymeric mucin Muc5ac is required for allergic airway hyperreactivity. Nat Commun. 2015;6:6281. https://doi.org/10.1038/ncomms7281 PMid:25687754 DOI: https://doi.org/10.1038/ncomms7281
Bonser LR, Erle DJ. Airway mucus and asthma: The role of MUC5AC and MUC5B. J Cli Med. 2017;6(12):112. https://doi.org/10.3390/jcm6120112 PMid:29186064 DOI: https://doi.org/10.3390/jcm6120112
Young HW, Williams OW, Chandra D, Bellinghausen LK, Pérez G, Suárez A, et al. Central role of Muc5ac expression in mucous metaplasia and its regulation by conserved 5’ elements. Am J Respir Cell Mol Biol. 2007;37(3):273-90. https://doi.org/10.1165/rcmb.2005-0460OC PMid:17463395 DOI: https://doi.org/10.1165/rcmb.2005-0460OC
Ingram JL, Kraft M. IL-13 in asthma and allergic disease: Asthma phenotypes and targeted therapies. J Allergy Clin Immunol. 2012;130(4):829-42. https://doi.org/10.1016/j.jaci.2012.06.034 PMid:22951057 DOI: https://doi.org/10.1016/j.jaci.2012.06.034
Munitz A, Brandt EB, Mingler M, Finkelman FD, Rothenberg MD. Distinct roles for IL-13 and IL-4 via IL-13 receptor α1 and the type II IL-4 receptor in asthma pathogenesis. Proc Natl Acad Sci U S A. 2018;105(20):7240-45. https://doi.org/10.1073/pnas.0802465105 PMid:18480254 DOI: https://doi.org/10.1073/pnas.0802465105
Rajavelu P, Chen G, Xu Y, Kitzmiller JA, Korfhagen TR, Whitsett JA. Airway epithelial SPDEF integrates goblet cell differentiation and pulmonary Th2 inflammation. J Clin Invest. 2015;125(5):2021-31. https://doi.org/10.1172/JCI79422 PMid:25866971 DOI: https://doi.org/10.1172/JCI79422
Chen G, Korfhagen TR, Xu Y, Kitzmiller J, Wert SE, Maeda Y, et al. SPDEF is required for mouse pulmonary goblet cell differentiation and regulates a network of genes associated with mucus production. J Clin Investig. 2009;119(10):2914-24. https://doi.org/10.1172/JCI39731 PMid:19759516 DOI: https://doi.org/10.1172/JCI39731
Erle DJ, Sheppard D. The cell biology of asthma. J Cell Biol. 2014;205(5):621-31. https://doi.org/10.1083/jcb.201401050 PMid:24914235 DOI: https://doi.org/10.1083/jcb.201401050
Singh B, Carpenter G, Coffey RJ. EGF receptor ligands: Recent advances. F1000Research. 2016;5:F1000. https://doi.org/10.12688/f1000research.9025.1 PMid:27635238 DOI: https://doi.org/10.12688/f1000research.9025.1
Athari SS. Targeting cell signaling in allergic asthma. Signal Transduct Target Ther. 2019;4:45. https://doi.org/10.1038/s41392-019-0079-0 PMid:31637021 DOI: https://doi.org/10.1038/s41392-019-0079-0
Parker JC, Douglas L, Bell J, Comer D, Bailie K, Skibinske G, et al. Epidermal growth factor removal or tyrphostin AG1478 treatment reduces goblet cells and mucus secretion of epithelial cells from asthmatic children using the air-liquid interface model. PLoS One. 2015;10(6):e0129546. https://doi.org/10.1371/journal.pone.0129546 PMid:26057128 DOI: https://doi.org/10.1371/journal.pone.0129546
Boucherat O, Morissette MC, Provencher S, Bonnet S, Maltais F. Bridging lung development with chronic obstructive pulmonary disease. Relevance of developmental pathways in chronic obstructive pulmonary disease pathogenesis. Am J Respir Crit Care Med. 2016;193(4):362-75. https://doi.org/10.1164/rccm.201508-1518PP PMid:26681127 DOI: https://doi.org/10.1164/rccm.201508-1518PP
Guseh JS, Bores SA, Stanger BZ, Zhou Q, Anderson WJ, Melton DA, et al. Notch signaling promotes airway mucous metaplasia and inhibits alveolar development. Development. 2009;136(10):1751-9. https://doi.org/10.1242/dev.029249 PMid:19369400 DOI: https://doi.org/10.1242/dev.029249
Ou-Yang HF, Wu CG, Qu SY, Li ZK. Notch signaling downregulates MUC5AC expression in airway epithelial cells through Hes1-dependent mechanisms. Respiration. 2013;86(4):341-6. https://doi.org/10.1159/000350647 PMid:23860410 DOI: https://doi.org/10.1159/000350647
Danahay H, Pessotti AD, Coote J, Montgomery BE, Xia D, Wilson A, et al. Notch2 is required for inflammatory cytokine-driven goblet cell metaplasia in the lung. Cell Rep. 2015;10(2):239-52. https://doi.org/10.1016/j.celrep.2014.12.017 PMid:25558064 DOI: https://doi.org/10.1016/j.celrep.2014.12.017
Kuchibhotla VN, Heijink HI. Join or leave the club: Jagged1 and notch2 dictate the fate of airway epithelial cells. Am J Respir Cell Mol Bio. 2020;63(1):4-6. https://doi.org/10.1165/rcmb.2020-0104ED PMid:32228394 DOI: https://doi.org/10.1165/rcmb.2020-0104ED
Walker JA, Barlow JL, McKenzie AN. Innate lymphoid cells--how did we miss them? Nat Rev Immunol. 2013;13(2):75-87. https://doi.org/10.1038/nri3349 PMid:23292121 DOI: https://doi.org/10.1038/nri3349
Woodruff PG, Modrek B, Choy DF, Jia G, Abbas AR, Ellwanger A, et al. T-helper type 2–driven inflammation defines major subphenotypes of asthma. Am J Respir Crit Care Med. 2009;180(5):388-95. https://doi.org/10.1164/rccm.200903-0392OC PMid:19483109 DOI: https://doi.org/10.1164/rccm.200903-0392OC
Seibold MA. Interleukin-13 stimulation reveals the cellular and functional plasticity of the airway epithelium. Ann Am Thorac Soc. 2018;15(2):S98-102. https://doi.org/10.1513/AnnalsATS.201711-868MG PMid:29676620 DOI: https://doi.org/10.1513/AnnalsATS.201711-868MG
Vestbo J, Hogg JC. Convergence of the epidemiology and pathology of COPD. Thorax. 2006;61(1):86-8. https://doi.org/10.1136/thx.2005.046227 PMid:16227325 DOI: https://doi.org/10.1136/thx.2005.046227
Shaykhiev R, Zuo WL, Chao I, Fukui T, Witover B, Brekman A, et al. EGF shifts human airway basal cell fate toward a smoking-associated airway epithelial phenotype. Proc Natl Acad Sci U S A. 2013;110(29):12102-7. https://doi.org/10.1073/pnas.1303058110 PMid:23818594 DOI: https://doi.org/10.1073/pnas.1303058110
Jing Y, Gimenes JA, Mishra R, Pham D, Comstock AT, Yu D, et al. NOTCH3 contributes to rhinovirus-induced goblet cell hyperplasia in COPD airway epithelial cells. Thorax. 2019;74(1):18-32. https://doi.org/10.1136/thoraxjnl-2017-210593 PMid:29991510 DOI: https://doi.org/10.1136/thoraxjnl-2017-210593
Faris AN, Ganesan S, Chattoraj A, Chattoraj SS, Comstock AT, Unger BL, et al. Rhinovirus delays cell repolarization in a model of injured/regenerating human airway epithelium. Am J Respir Cell Mol Biol. 2016;55(4):487-99. https://doi.org/10.1165/rcmb.2015-0243OC PMid:27119973 DOI: https://doi.org/10.1165/rcmb.2015-0243OC
Kirkham S, Kolsum U, Rousseau K, Singh D, Vestbo J, Thornton DJ. MUC5B is the major mucin in the gel phase of sputum in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2008;178(10):1033-9. https://doi.org/10.1164/rccm.200803-391OC PMid:18776153 DOI: https://doi.org/10.1164/rccm.200803-391OC
Caramori G, Di Gregorio C, Carlstedt I, Casolari P, Guzzinati I, Adcock IM, et al. Mucin expression in peripheral airways of patients with chronic obstructive pulmonary disease. Histopathology. 2004;45(5):477-84. https://doi.org/10.1111/j.1365-2559.2004.01952.x PMid:15500651 DOI: https://doi.org/10.1111/j.1365-2559.2004.01952.x
Zuo WL, Yang J, Gomi K, Chao I, Crystal RG, Shaykhiev R, et al. EGF-amphiregulin interplay in airway stem/progenitor cells links the pathogenesis of smoking-induced lesions in the human airway epithelium. Stem Cells. 2017;35(3):824-37. https://doi.org/10.1002/stem.2512 PMid:27709733 DOI: https://doi.org/10.1002/stem.2512
Leopold PL, O’Mahony MJ, Lian XJ, Tilley AE, Harvey BG, Crystal RG. Smoking is associated with shortened airway cilia. PLoS One. 2009;4(12):e8157. https://doi.org/10.1371/journal.pone.0008157 PMid:20016779 DOI: https://doi.org/10.1371/journal.pone.0008157
Stoltz DA, Meyerholz DK, Welsh MJ. Origins of cystic fibrosis lung disease. N Engl J Med. 2015;372(16):351-62. https://doi.org/10.1056/NEJMra1300109 PMid:25875271 DOI: https://doi.org/10.1056/NEJMra1300109
Elborn JS. Cystic fibrosis. Lancet. 2016;388(10059):2519-31. https://doi.org/10.1016/S0140-6736(16)00576-6 PMid:27140670 DOI: https://doi.org/10.1016/S0140-6736(16)00576-6
Markus OH, Gerrit J, Michele G, Hermann L, Bruce KR. MUC5AC and MUC5B mucins increase in cystic fibrosis airway secretions during pulmonary exacerbation. Am J Respir Crit. 2007;175(8):816-21. https://doi.org/10.1164/rccm.200607-1011OC PMid:17255563 DOI: https://doi.org/10.1164/rccm.200607-1011OC
Ashley GH, Camille E, Brian B, Lubna HA, Li-Heng C, Margaret WL, et al. Cystic fibrosis airway secretions exhibit mucin hyperconcentration and increased osmotic pressure. J Clin Invest. 2014;124(7):3047-60. https://doi.org/10.1172/JCI73469 PMid:24892808 DOI: https://doi.org/10.1172/JCI73469
Tizzano EF, O’Brodovich H, Chitayat D, Bènichou JC, Buchwald M. Regional expression of CFTR in developing human respiratory tissues. Am J Respir Cell Mol Biol. 1994;10(4):355-62. https://doi.org/10.1165/ajrcmb.10.4.7510983 PMid:7510983 DOI: https://doi.org/10.1165/ajrcmb.10.4.7510983
Moore PJ, Tarran R. The epithelial sodium channel (ENaC) as a therapeutic target for cystic fibrosis lung disease. Expert Opin Ther Targets. 2018;22(8):687-701. https://doi.org/10.1080/14728222.2018.1501361 PMid:30028216 DOI: https://doi.org/10.1080/14728222.2018.1501361
Ostedgaard LS, Moninger TO, McMenimen JD, Sawin NM, Parker CP, Thornell IM, et al. Gel-forming mucins form distinct morphologic structures in airways. Proc Natl Acad Sci USA. 2017;114(26):6842-7. https://doi.org/10.1073/pnas.1703228114 PMid:28607090 DOI: https://doi.org/10.1073/pnas.1703228114
Downloads
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2022 Said Ahmad Shah, Hajime Ishinaga, Kazuhiko Takeuchi (Author)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
http://creativecommons.org/licenses/by-nc/4.0