Holothurin Compound from Sea Cucumber (Holothuria sp.) as Antifungal Alternative against Candida Infections

Authors

  • Sri Handayani Doctoral Program of Medical Science, Faculty of Medicine, Brawijaya University, Malang, Indonesia; Departement of Midwifery, Aisyiyah Surakarta University, Surakarta, Indonesia
  • Nurdiana Nurdiana Departement of Microbiology, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
  • Sri Winarsih Departement of Pharmacy, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia https://orcid.org/0000-0002-7476-9184
  • Agustina Tri Endharti Departement of Parasitology, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia

DOI:

https://doi.org/10.3889/oamjms.2022.8086

Keywords:

Antifungal, Candida albicans, Holothurin

Abstract

BACKGROUND: The previous studies have identified chemical compounds in sea cucumbers that have antifungal properties. However, further information on the underlying antifungal needed to be updated.

AIM: This study aimed to discover efficient antifungal treatments against candidiasis disease.

MATERIALS AND METHODS: This study analyzed the antifungal activity from Holothurin against Candida albicans in silico using molecular docking and minimum inhibitory concentration (MIC).

RESULTS: The results revealed that holothurin has a binding affinity of −7.9 kcal/mol and MIC value of 1.5 mg/ml.

CONCLUSION: Holothurin may inhibit the infection of C. albicans. Furthermore, additional research is required to validate the activity of this compound.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

Cortegiani A, Misseri G, Fasciana T, Giammanco A, Giarratano A, Chowdhary A. Epidemiology, clinical characteristics, resistance, and treatment of infections by Candida auris. J Intens Care. 2018;6:69. DOI: https://doi.org/10.1186/s40560-018-0342-4

Dadar M, Tiwari R, Karthik K, Chakraborty S, Shahali Y, Dhama K. Candida albicans-Biology, molecular characterization, pathogenicity, and advances in diagnosis and control-an update. Microb Pathog. 2018;117:128-38. DOI: https://doi.org/10.1016/j.micpath.2018.02.028

Gow NA, van de Veerdonk FL, Brown AJ, Netea MG. Candida albicans morphogenesis and host defence: Discriminating invasion from colonization. Nat Rev Microbiol. 2011;10(2):112-22. https://doi.org/10.1038/nrmicro2711 PMid:22158429 DOI: https://doi.org/10.1038/nrmicro2711

Mathé L, van Dijck P. Recent insights into Candida albicans biofilm resistance mechanisms. Curr Genet. 2013;59(4):251-64. https://doi.org/10.1007/s00294-013-0400-3 PMid:23974350 DOI: https://doi.org/10.1007/s00294-013-0400-3

Wong SS, Kao RY, Yuen KY, Wang Y, Yang D, Samaranayake LP, et al. In vitro and in vivo activity of a novel antifungal small molecule against Candida infections. PLoS One. 2014;9(1):e85836. https://doi.org/10.1371/journal.pone.0085836 PMid:24465737 DOI: https://doi.org/10.1371/journal.pone.0085836

Agarwal MB, Rathi SA, Ratho N, Subramanian R. Caspofungin: A major breakthrough in treatment of systemic fungal infections. J Assoc Physicians India. 2006;54:943-8. PMid:17334012

Garnock-Jones KP, Keam SJ. Caspofungin: In pediatric patients with fungal infections. Paediatr Drugs. 2009;11(4):259-69. https://doi.org/10.2165/00148581-200911040-00005 PMid:19566110 DOI: https://doi.org/10.2165/00148581-200911040-00005

Glöckner A. Treatment and prophylaxis of invasive candidiasis with anidulafungin, caspofungin and micafungin-review of the literature. Eur J Med Res. 2011;16(4):167-79. https://doi.org/10.1186/2047-783x-16-4-167 PMid:21486731 DOI: https://doi.org/10.1186/2047-783X-16-4-167

Martins A, Vieira H, Gaspar H, Santos S. Marketed marine natural products in the pharmaceutical and cosmeceutical industries: Tips for success. Mar Drugs. 2014;12(2):1066-101. https://doi.org/10.3390/md12021066 PMid:24549205 DOI: https://doi.org/10.3390/md12021066

Pangkey H, Lantu S, Manuand L, Mokolensang J. Prospect of Sea Cucumber culture in Indonesia as potential food sources. J Coastal Dev. 2012;15(2):16.

Bordbar S, Anwar F, Saari N. High-value components and bioactives from sea cucumbers for functional foods-a review. Mar Drugs. 2011;9(10):1761-805. https://doi.org/10.3390/md9101761 PMid:22072996 DOI: https://doi.org/10.3390/md9101761

Janakiram NB, Mohammed A, Rao CV. Sea cucumbers metabolites as potent anti-cancer agents. Mar Drugs. 2015;13(5):2909-23. https://doi.org/10.3390/md13052909 PMid:25984989 DOI: https://doi.org/10.3390/md13052909

Kareh M, El Nahas R, Al-Aaraj L, Al-Ghadban S, Al Deen NN, Saliba N, et al. Anti-proliferative and anti-inflammatory activities of the sea cucumber Holothuria polii aqueous extract. SAGE Open Med. 2018;6:2050312118809541. https://doi.org/10.1177/2050312118809541 PMid:30455947 DOI: https://doi.org/10.1177/2050312118809541

Souhaly JW, Rahayu S. Cytotoxic activities of sea cucumber (Bohadschia argus) extract against T47D cells. AIP Conf Proc. 2018;2019(1):060008. DOI: https://doi.org/10.1063/1.5061917

Yasman S, Yanuar A, Tamimi Z, Rezi Riadhi S. In Silico analysis of sea cucumber bioactive compounds as anti-breast cancer mechanism using autodock vina. Iran J Pharm Sci. 2020;16(1):1-8.

Ozupek NM, Cavas L. Triterpene glycosides associated antifouling activity from Holothuria tubulosa and H. polii. Reg Stud Mar Sci. 2017;13:32-41. https://doi.org/10.1016/j.rsma.2017.04.003 DOI: https://doi.org/10.1016/j.rsma.2017.04.003

Wargasetia TL, Ratnawati H, Widodo N. Anticancer potential of holothurin A, holothurin B, and holothurin B3 from the sea cucumber Holothuria scabra. AIP Conf Proc. 2020;2231(1):040084. DOI: https://doi.org/10.1063/5.0002552

Silva DR, de Cássia Orlandi Sardi J, Freires IA, Silva AC, Rosalen PL. In silico approaches for screening molecular targets in Candida albicans: A proteomic insight into drug discovery and development. Eur J Pharmacol. 2019;842:64-9. https://doi.org/10.1016/j.ejphar.2018.10.016 PMid:30326213 DOI: https://doi.org/10.1016/j.ejphar.2018.10.016

Guerra FQ, de Araújo RS, de Sousa JP, de Oliveira Pereira F, Mendonça FJ Jr., Barbosa-Filho JM, et al. Evaluation of antifungal activity and mode of action of new coumarin derivative, 7-hydroxy-6-nitro-2H-1-benzopyran-2-one, against Aspergillus spp. Evid Based Complement Alternat Med. 2015;2015:925096. https://doi.org/10.1155/2015/925096 PMid:26175794 DOI: https://doi.org/10.1155/2015/925096

Hadacek F, Greger H. Testing of antifungal natural products: Methodologies, comparability of results and assay choice. Phytochem Anal. 2000;11(3):137-47. DOI: https://doi.org/10.1002/(SICI)1099-1565(200005/06)11:3<137::AID-PCA514>3.0.CO;2-I

Rosa D, Halim Y, Kam N, Sugata M, Samantha A. Antibacterial activity of polyscias scutellaria fosberg against Acinetobacter Sp. Asian J Pharm Clin Res. 2019;12(1):516-9. https://doi.org/10.22159/ajpcr.2019.v12i1.30270 DOI: https://doi.org/10.22159/ajpcr.2019.v12i1.30270

Souhaly JW, Rahayu S, Widodo W. Role of active compounds of Bohadschia argus inhibit cancer cell survival. J Exp Life Sci. 2019;9(1):16-8. DOI: https://doi.org/10.21776/ub.jels.2019.009.01.03

Wargasetia TL, Permana S, Widodo. The role of sea cucumber active compound and its derivative as an anti-cancer agent. Curr Pharmacol Rep. 2018;4(1):27-32. https://doi.org/10.1007/s40495-018-0121-x DOI: https://doi.org/10.1007/s40495-018-0121-x

Berlowska J, Dudkiewicz M, Kregiel D, Czyzowska A, Witonska I. Cell lysis induced by membrane-damaging detergent saponins from Quillaja saponaria. Enzyme Microb Technol. 2015;75-76:44-8. https://doi.org/10.1016/j.enzmictec.2015.04.007 PMid:26047915 DOI: https://doi.org/10.1016/j.enzmictec.2015.04.007

Kim KW, Thomas RL, Lee C, Park HJ. Antimicrobial activity of native chitosan, degraded chitosan, and O-carboxymethylated chitosan. J Food Prot. 2003;66(8):1495-8. DOI: https://doi.org/10.4315/0362-028X-66.8.1495

Sun JN, Solis NV, Phan QT, Bajwa JS, Kashleva H, Thompson A, et al. Host cell invasion and virulence mediated by Candida albicans Ssa1. PLoS Pathog. 2010;6(11):e1001181. https://doi.org/10.1371/journal.ppat.1001181 PMid:21085601 DOI: https://doi.org/10.1371/journal.ppat.1001181

Dalle F, Wächtler B, L’Ollivier C, Holland G, Bannert N, Wilson D, et al. Cellular interactions of Candida albicans with human oral epithelial cells and enterocytes. Cell Microbiol. 2010;12(2):248-71. https://doi.org/10.1111/j.1462-5822.2009.01394.x PMid:19863559 DOI: https://doi.org/10.1111/j.1462-5822.2009.01394.x

Mayer FL, Wilson D, Hube B. Candida albicans pathogenicity mechanisms. Virulence. 2013;4(2):119-28. https://doi.org/10.4161/viru.22913 PMid:23302789 DOI: https://doi.org/10.4161/viru.22913

Naglik JR, Moyes DL, Wächtler B, Hube B. Candida albicans interactions with epithelial cells and mucosal immunity. Microbes Infect. 2011;13(12):963-76. https://doi.org/10.1016/j.micinf.2011.06.009 PMid:21801848 DOI: https://doi.org/10.1016/j.micinf.2011.06.009

Villar CC, Kashleva H, Nobile CJ, Mitchell AP, Dongari-Bagtzoglou A. Mucosal tissue invasion by Candida albicans is associated with E-cadherin degradation, mediated by transcription factor Rim101p and protease Sap5p. Infect Immun. 2007;75(5):2126-35. https://doi.org/10.1128/IAI.00054-07 PMid:17339363 DOI: https://doi.org/10.1128/IAI.00054-07

Schaller M, Borelli C, Korting HC, Hube B. Hydrolytic enzymes as virulence factors of Candida albicans. Mycoses. 2005;48(6):365-77. https://doi.org/10.1111/j.1439-0507.2005.01165.x PMid:16262871 DOI: https://doi.org/10.1111/j.1439-0507.2005.01165.x

Downloads

Published

2022-03-18

How to Cite

1.
Handayani S, Nurdiana N, Winarsih S, Endharti AT. Holothurin Compound from Sea Cucumber (Holothuria sp.) as Antifungal Alternative against Candida Infections. Open Access Maced J Med Sci [Internet]. 2022 Mar. 18 [cited 2024 Nov. 21];10(A):470-4. Available from: https://oamjms.eu/index.php/mjms/article/view/8086