Novel Copolymer Cationic from Agroindustrial Waste using Microwave

Authors

  • Prayudhy Yushananta Department of Environmetal Health, Politeknik Kesehatan Kemenkes Tanjungkarang, Lampung. Indonesia; Doctoral Program of Environmental Science, Universitas Lampung, Lampung. Indonesia https://orcid.org/0000-0002-8171-0973
  • Mei Ahyanti Department of Environmetal Health, Politeknik Kesehatan Kemenkes Tanjungkarang, Lampung. Indonesia https://orcid.org/0000-0002-4965-6217

DOI:

https://doi.org/10.3889/oamjms.2022.8126

Keywords:

Coagulation-flocculation, Banana pith, Turbidity, COD, Color

Abstract

Background. A cationic copolymer has been developed as a substitute for synthetic coagulants, resulting in decreased pH, potential health problems, high costs, and large sludge volumes.

Aim. This study evaluated the potential of banana pith in several treatments as a natural coagulant to reduce turbidity, COD, and color.

Methods. The synthesis was carried out by inserting the cationic moiety of GTA (3-Chloro-2-hydroxypropyl trimethyl ammonium chloride) into the starch backbone by microwave radiation.

Resulth. It has been found that the floculation characteristics depend on the charge neutralization, followed by the linkage between the copolymer chains. The results showed that the initial dose and concentration influenced the copolymer's flocculation performance.

Conclusions. Natural polysaccharides can be modified becomes an effective flocculation material for treating clean water and wastewater

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

Garcia Soler N, Moss T, Papasozomenou O. Rain and the city: Pathways to mainstreaming rainwater harvesting in Berlin. Geoforum. 2018;89:96-106. https://doi.org/10.1016/j.geoforum.2018.01.010 DOI: https://doi.org/10.1016/j.geoforum.2018.01.010

Hakizimana JN, Gourich B, Chafi M, Stiriba Y, Vial C, Drogui P, et al. Electrocoagulation process in water treatment: A review of electrocoagulation modeling approaches. Desalination. 2017;404:1-21. https://doi.org/10.1016/j.desal.2016.10.011 DOI: https://doi.org/10.1016/j.desal.2016.10.011

Bhatnagar A, Sillanpää M. Utilization of agro-industrial and municipal waste materials as potential adsorbents for water treatment-A review. Chem Eng J. 2010;157:277-96. https://doi.org/10.1016/j.cej.2010.01.007 DOI: https://doi.org/10.1016/j.cej.2010.01.007

Choy SY, Prasad KM, Wu TY, Raghunandan ME, Ramanan RN. Utilization of plant-based natural coagulants as future alternatives towards sustainable water clarification. J Environ Sci (China). 2014;26(11):2178-89. https://doi.org/10.1016/j.jes.2014.09.024 PMid:25458671 DOI: https://doi.org/10.1016/j.jes.2014.09.024

Asrafuzzaman M, Fakhruddin AN, Hossain MA. Reduction of turbidity of water using locally available natural coagulants. ISRN Microbiol. 2011;2011:632189. https://doi.org/10.5402/2011/632189 PMid:23724307 DOI: https://doi.org/10.5402/2011/632189

Quince E. Summary of Indonesia’s Agriculture, Natural Resources, and Environment Sector Assessment. ADB Papers On Indonesia; 2015. p. 1-7.

Carolin CF, Kumar PS, Saravanan A, Joshiba GJ, Naushad M. Efficient techniques for the removal of toxic heavy metals from aquatic environment: A review. J Environ Chem Eng. 2017;5:2782-99. https://doi.org/10.1016/j.jece.2017.05.029 DOI: https://doi.org/10.1016/j.jece.2017.05.029

Kumar PS, Joshiba GJ, Femina CC, Varshini P, Priyadharshini S, Karthick MS, et al. A critical review on recent developments in the low-cost adsorption of dyes from wastewater. Desalination Water Treatment. 2019;172:395-416. https://doi.org/10.5004/dwt.2019.24613 DOI: https://doi.org/10.5004/dwt.2019.24613

UN. World Population Prospects 2019: Highlights United Nations. United Nation; 2020.

Arnel NW. Climate change and global water resources. Global Environ Change. 1999;9:S31-49. https://doi.org/10.1016/S0959-3780(99)00017-5 DOI: https://doi.org/10.1016/S0959-3780(99)00017-5

Taiwo AS, Adenike K, Aderonke O. Efficacy of a natural coagulant protein from Moringa oleifera (Lam) seeds in treatment of Opa reservoir water, Ile-Ife, Nigeria. Heliyon. 2020;6:e03335. https://doi.org/10.1016/j.heliyon.2020.e03335 PMid:32051883 DOI: https://doi.org/10.1016/j.heliyon.2020.e03335

Salehizadeh H, Yan N, Farnood R. Recent advances in polysaccharide bio-based flocculants. Biotechnol Adv. 2018;36(1):92-119. https://doi.org/10.1016/j.biotechadv.2017.10.002 PMid:28993221 DOI: https://doi.org/10.1016/j.biotechadv.2017.10.002

Walton JR. Aluminum’s involvement in the progression of alzheimer’s disease. J Alzheimers Dis. 2013;35(1):7-43. https://doi.org/10.3233/JAD-121909 PMid:23380995 DOI: https://doi.org/10.3233/JAD-121909

Wang Y, Jiang L, Shang H, Li Q, Zhou W. Treatment of azo dye wastewater by the self-flocculating marine bacterium Aliiglaciecola lipolytica. Environ Technol Innov. 2020;19:100810. https://doi.org/10.1016/j.eti.2020.100810 DOI: https://doi.org/10.1016/j.eti.2020.100810

Ahmad T, Danish M. Prospects of banana waste utilization in wastewater treatment: A review. J Environ Manag. 2018;206:330-48. https://doi.org/10.1016/j.jenvman.2017.10.061 PMid:29100146 DOI: https://doi.org/10.1016/j.jenvman.2017.10.061

Sumampouw OJ, Risjani Y. Bacteria as indicators of environmental pollution: Review. Int J Ecosyst. 2014;4:251-8. https://doi.org/10.5923/j.ije.20140406.03

Yushananta P, Bakri S. Analysis for increasing access to safe drinking water and healthy sanitation using a cost benefit analysis (CBA) approach. J Kesehatan. 2021;12:306. https://doi.org/10.26630/jk.v12i2.1855 DOI: https://doi.org/10.26630/jk.v12i2.1855

Tamaddun K, Kalra A, Ahmad S. Potential of rooftop rainwater harvesting to meet outdoor water demand in arid regions. J Arid Land. 2018;10:68-83. https://doi.org/10.1007/s40333-017-0110-7 DOI: https://doi.org/10.1007/s40333-017-0110-7

Mays LW. Groundwater resources sustainability: Past, present, and future. Water Resour Manag. 2013;27:4409-24. https://doi.org/10.1007/s11269-013-0436-7 DOI: https://doi.org/10.1007/s11269-013-0436-7

Konikow LF, Kendy E. Groundwater depletion: A global problem. Hydrogeol J. 2005;13:317-20. https://doi.org/10.1007/s10040-004-0411-8 DOI: https://doi.org/10.1007/s10040-004-0411-8

Konikow LF. Contribution of global groundwater depletion since 1900 to sea-level rise. Geophys Res Lett. 2011;38:48604. https://doi.org/10.1029/2011GL048604 DOI: https://doi.org/10.1029/2011GL048604

Sánchez AS, Cohim E, Kalid RA. A review on physicochemical and microbiological contamination of roof-harvested rainwater in urban areas. Sustain Water Qual Ecol. 2015;6:119-37. https://doi.org/10.1016/j.swaqe.2015.04.002 DOI: https://doi.org/10.1016/j.swaqe.2015.04.002

Abdulfatai J, Saka AA, Afolabi AS, Micheal O. Development of adsorbent from banana peel for wastewater treatment. Appl Mech Mater. 2013;248:310-5. https://doi.org/10.4028/www.scientific.net/AMM.248.310 DOI: https://doi.org/10.4028/www.scientific.net/AMM.248.310

Barbosa AD, da Silva LF, de Paula HM, Romualdo LL, Sadoyama G, Andrade LS. Combined use of coagulation (M. oleifera) and electrochemical techniques in the treatment of industrial paint wastewater for reuse and/or disposal. Water Res. 2018;145:153-61. https://doi.org/10.1016/j.watres.2018.08.022 DOI: https://doi.org/10.1016/j.watres.2018.08.022

Shen X, Gao B, Guo K, Yue Q. Application of composite flocculants for removing organic matter and mitigating ultrafiltration membrane fouling in surface water treatment: the role of composite ratio. Environ Sci Water Res Technol. 2019;5:2242-50. https://doi.org/10.1039/C9EW00528E DOI: https://doi.org/10.1039/C9EW00528E

Stavrinou A, Aggelopoulos CA, Tsakiroglou CD. Exploring the adsorption mechanisms of cationic and anionic dyes onto agricultural waste peels of banana, cucumber and potato: Adsorption kinetics and equilibrium isotherms as a tool. J Environ Chem Eng. 2018;6:6958-70. https://doi.org/10.1016/j.jece.2018.10.063 DOI: https://doi.org/10.1016/j.jece.2018.10.063

Wu H, Liu Z, Yang H, Li A. Evaluation of chain architectures and charge properties of various starch-based flocculants for flocculation of humic acid from water. Water Res. 2016;96:126-35. https://doi.org/10.1016/j.watres.2016.03.055 DOI: https://doi.org/10.1016/j.watres.2016.03.055

Yongabi K. Biocoagulants for water and waste water purification: A review. Int Rev Chem Eng. 2010;2:444-58.

Choudhary M, Neogi S. A natural coagulant protein from Moringa oleifera: Isolation, characterization, and potential use for water treatment. Mater Res Exp. 2017;4:1-27. https://doi.org/10.1088/2053-1591/aa8b8c DOI: https://doi.org/10.1088/2053-1591/aa8b8c

Ghimici L, Constantin M. A review of the use of pullulan derivatives in wastewater purification. React Funct Polym. 2020;149:104510. https://doi.org/10.1016/j.reactfunctpolym.2020.104510 DOI: https://doi.org/10.1016/j.reactfunctpolym.2020.104510

de Gurpilhares DB, Cinelli LP, Simas NK, Pessoa A, Sette LD. Marine prebiotics: Polysaccharides and oligosaccharides obtained by using microbial enzymes. Food Chem. 2019;280:175-86. https://doi.org/10.1016/j.foodchem.2018.12.023 DOI: https://doi.org/10.1016/j.foodchem.2018.12.023

Kakoi B, Kaluli JW, Ndiba P, Thiong’o G. Banana pith as a natural coagulant for polluted river water. Ecol Eng. 2016;95:699-705. https://doi.org/10.1016/j.ecoleng.2016.07.001 DOI: https://doi.org/10.1016/j.ecoleng.2016.07.001

Li Y, Liu J, Yuan Q, Tang H, Yu F, Lv X. A green adsorbent derived from banana peel for highly effective removal of heavy metal ions from water. RSC Adv. 2016;6:45041-8. https://doi.org/10.1039/c6ra07460j DOI: https://doi.org/10.1039/C6RA07460J

Muthuraman G, Sasikala S. Removal of turbidity from drinking water using natural coagulants. J Ind Eng Chem. 2014;20:1727-31. https://doi.org/10.1016/j.jiec.2013.08.023 DOI: https://doi.org/10.1016/j.jiec.2013.08.023

Radoiu M. Preparation of polyelectrolytes for wastewater treatment. J Hazard Mater. 2004;106:19-24. https://doi.org/10.1016/j.jhazmat.2003.08.014 PMid:14693435 DOI: https://doi.org/10.1016/j.jhazmat.2003.08.014

Salleh MA, Mahmoud DK, Karim WA, Idris A. Cationic and anionic dye adsorption by agricultural solid wastes: A comprehensive review. Desalination. 2011;280:1-13. https://doi.org/10.1016/j.desal.2011.07.019 DOI: https://doi.org/10.1016/j.desal.2011.07.019

Kristianto H. The potency of Indonesia native plants as natural coagulant: A mini review. Water Conserv Sci Eng. 2017;2:51-60. https://doi.org/10.1007/s41101-017-0024-4 DOI: https://doi.org/10.1007/s41101-017-0024-4

Maurya S, Daverey A. Evaluation of plant-based natural coagulants for municipal wastewater treatment. 3 Biotech. 2018;8:1-4. https://doi.org/10.1007/s13205-018-1103-8 DOI: https://doi.org/10.1007/s13205-018-1103-8

Sillanpää M, Ncibi MC, Matilainen A, Vepsäläinen M. Removal of natural organic matter in drinking water treatment by coagulation: A comprehensive review. Chemosphere. 2018;190:54-71. https://doi.org/10.1016/j.chemosphere.2017.09.113 DOI: https://doi.org/10.1016/j.chemosphere.2017.09.113

Tripathy T, De BR. Flocculation: A new way to treat the waste water. J Phys Sci. 2006;10:93-127.

Fu Y, Meng XJ, Lu NN, Jian HL, Di Y. Characteristics changes in banana peel coagulant during storage process. Int J Environ Sci Technol. 2019;16:7747-56. https://doi.org/10.1007/s13762-018-02188-0 DOI: https://doi.org/10.1007/s13762-018-02188-0

Villabona-Ortíz A, Tejada-Tovar C, Toro RO. Comparative study of the use of starch from agroindustrial materials in the coagulation-floculation process. Rev Mex Ingenier Quím. 2019;19:593-601. https://doi.org/10.24275/rmiq/IA740 DOI: https://doi.org/10.24275/rmiq/IA740

O’Connell DW, Birkinshaw C, O’Dwyer TF. Heavy metal adsorbents prepared from the modification of cellulose: A review. Bioresour Technol. 2008;99:6709-24. https://doi.org/10.1016/j.biortech.2008.01.036 DOI: https://doi.org/10.1016/j.biortech.2008.01.036

Jiraprasertkul W, Nuisin R, Jinsart W, Kiatkamjornwong S. Synthesis and characterization of cassava starch graft poly(acrylic acid) and poly[(acrylic acid)-co-acrylamide] and polymer flocculants for wastewater treatment. J Appl Polym Sci. 2006;102:2915-28. https://doi.org/10.1002/app.23956 DOI: https://doi.org/10.1002/app.23956

Bolto BA. Soluble polymers in water purification. Prog Polym Sci. 1995;20:987-1041. https://doi.org/10.1016/0079-6700(95)00010-D DOI: https://doi.org/10.1016/0079-6700(95)00010-D

Yavuz CI, Vaizoǧlu SA, Güler Ç. Aluminium in drinking water. TAF Prev Med Bull. 2013;12:589-96. https://doi.org/10.5455/pmb.1-1345809534 DOI: https://doi.org/10.5455/pmb.1-1345809534

Baptista AT, Silva MO, Gomes RG, Bergamasco R, Vieira MF, Vieira AM. Protein fractionation of seeds of Moringa oleifera lam and its application in superficial water treatment. Sep Purif Technol. 2017;180:114-24. https://doi.org/10.1016/j.seppur.2017.02.040 DOI: https://doi.org/10.1016/j.seppur.2017.02.040

Theodoro JD, Lenz GF, Zara RF, Bergamasco R. Coagulants and natural polymers: Perspectives for the treatment of water. Plast Polym Technol. 2013;2:55-62.

Oladoja NA. Headway on natural polymeric coagulants in water and wastewater treatment operations. J Water Proc Eng. 2015;6:174-92. https://doi.org/10.1016/j.jwpe.2015.04.004 DOI: https://doi.org/10.1016/j.jwpe.2015.04.004

De Carvalho HP, Huang J, Zhao M, Liu G, Dong L, Liu X. Improvement of Methylene Blue removal by electrocoagulation/banana peel adsorption coupling in a batch system. Alexandria Eng J. 2015;54:777-86. https://doi.org/10.1016/j.aej.2015.04.003 DOI: https://doi.org/10.1016/j.aej.2015.04.003

Mouhamed Bayane B, Yanjun Q, Bekhzad Y. A review and analysis of railway transportation system in the economic community of West African States: Towards the development of sustainable regional goal. Glob J Eng Technol Adv. 2020;2020:11-022. https://doi.org/10.30574/gjeta DOI: https://doi.org/10.30574/gjeta

Choubey S, Rajput SK, Bapat KN. Comparison of efficiency of some natural coagulants bioremediation. Int J Emerg Technol Adv Eng. 2012;2:429-34.

Kalia S, Sabaa MW. Polysaccharide Based Graft Copolymers. Vol. 9783642365; 2013. https://doi.org/10.1007/978-3-642-36566-9 DOI: https://doi.org/10.1007/978-3-642-36566-9

Polaskova M, Peer P, Cermak R, Ponizil P. Effect of thermal treatment on crystallinity of poly(ethylene oxide) electrospun fibers. Polymers. 2019;11(9):1384. https://doi.org/10.3390/polym11091384 DOI: https://doi.org/10.3390/polym11091384

Priyatharishini M, Mokhtar NM, Kristanti RA. Study on the effectiveness of banana peel coagulant in turbidity reduction of synthetic wastewater. Int J Eng Technol Sci. 2019;6:82-90. https://doi.org/http://dxdoi.org/10.15282/ijets.6.1.2019.1007 DOI: https://doi.org/10.15282/ijets.v6i1.2109

Ibrahim A, Yaser AZ. Colour removal from biologically treated landfill leachate with tannin-based coagulant. J Environ Chem Eng. 2019;7:103483. https://doi.org/10.1016/j.jece.2019.103483 DOI: https://doi.org/10.1016/j.jece.2019.103483

Guo J, Chen C. Sludge conditioning using the composite of a bioflocculant and PAC for enhancement in dewaterability. Chemosphere. 2017;185:277-83. https://doi.org/10.1016/j.chemosphere.2017.06.111 DOI: https://doi.org/10.1016/j.chemosphere.2017.06.111

Mishra A, Bajpai M. Flocculation behaviour of model textile wastewater treated with a food grade polysaccharide. J Hazard Mater. 2005;118:213-7. https://doi.org/10.1016/j.jhazmat.2004.11.003 DOI: https://doi.org/10.1016/j.jhazmat.2004.11.003

Rodiño-Arguello JP, Feria-Diaz JJ, de Paternina-Uribe RJ, Marrugo-Negrete JL. Sinú River raw water treatment by natural coagulants. Rev Facult Ingenier Univ Antioquia. 2015;76:11. https://doi.org/10.17533/udea.redin.n76a11 DOI: https://doi.org/10.17533/udea.redin.n76a11

dos Santos JD, Veit MT, Juchen PT, da Cunha Gonçalves G, Palácio SM, Fagundes-Klen M. Use of different coagulants for cassava processing wastewater treatment. J Environ Chem Eng. 2018;6:1821-7. https://doi.org/10.1016/j.jece.2018.02.039 DOI: https://doi.org/10.1016/j.jece.2018.02.039

Choudhary M, Ray MB, Neogi S. Evaluation of the potential application of cactus (Opuntia ficus-indica) as a bio-coagulant for pre-treatment of oil sands process-affected water. Sep Purif Technol. 2019;209:714-24. https://doi.org/10.1016/j.seppur.2018.09.033. DOI: https://doi.org/10.1016/j.seppur.2018.09.033

Daverey A, Tiwari N, Dutta K. Utilization of extracts of Musa paradisica (banana) peels and Dolichos lablab (Indian bean) seeds as low-cost natural coagulants for turbidity removal from water. Environ Sci Pollut Res. 2019;26:34177-83. https://doi.org/10.1007/s11356-018-3850-9 DOI: https://doi.org/10.1007/s11356-018-3850-9

Kakoi B, Kaluli JW, Ndiba P, Thiong’o G. Optimization of maerua decumbent bio-coagulant in paint industry wastewater treatment with response surface methodology. J Cleaner Prod. 2017;164:1124-34. https://doi.org/10.1016/j.jclepro.2017.06.240 DOI: https://doi.org/10.1016/j.jclepro.2017.06.240

Alwi H, Idris J, Musa M, Ku Hamid KH. A preliminary study of banana stem juice as a plant-based coagulant for treatment of spent coolant wastewater. J Chem 2013;2013:165057. https://doi.org/10.1155/2013/165057 DOI: https://doi.org/10.1155/2013/165057

Pal S, Ghosh S, Sen G, Jha U, Singh RP. Cationic tamarind kernel polysaccharide (Cat TKP): A novel polymeric flocculant for the treatment of textile industry wastewater. Int J Biol Macromol. 2009;45:518-23. https://doi.org/10.1016/j.ijbiomac.2009.08.004 DOI: https://doi.org/10.1016/j.ijbiomac.2009.08.004

Yaman SB. Synthesis of Dicationic Ionic Liquids and their Application as Co-Catalyst for Fructose Conversion; 2018.

Wan Ahmad WY. Synthesis and physicochemical characterization of cationic polymeric surfactant from Dioscorea pyrifolia Starch. Malaysian J Anal Sci. 2016;20:1278-85. https://doi.org/10.17576/mjas-2016-2006-06 DOI: https://doi.org/10.17576/mjas-2016-2006-06

Lin Q, Qian S, Li C, Pan H, Wu Z, Liu G. Synthesis, flocculation and adsorption performance of amphoteric starch. Carbohydr Polym. 2012;90:275-83. https://doi.org/10.1016/j.carbpol.2012.05.035 DOI: https://doi.org/10.1016/j.carbpol.2012.05.035

Mishra S, Mukul A, Sen G, Jha U. Microwave assisted synthesis of polyacrylamide grafted starch (St-g-PAM) and its applicability as flocculant for water treatment. Int J Biol Macromol. 2011;48:106-11. https://doi.org/10.1016/j.ijbiomac.2010.10.004 DOI: https://doi.org/10.1016/j.ijbiomac.2010.10.004

Wei Y, Cheng F, Zheng H. Synthesis and flocculating properties of cationic starch derivatives. Carbohydr Polym. 2008;74:673-9. https://doi.org/10.1016/j.carbpol.2008.04.026 DOI: https://doi.org/10.1016/j.carbpol.2008.04.026

National Standardization Agency of Indonesia. Water and Waste Water. Sampling Method for Waste Water (SNI 6989.59-2008). Ch. 59. National Standardization Agency of Indonesia; 2008. p. 1-19.

Bolto B, Gregory J. Organic polyelectrolytes in water treatment. Water Res. 2007;41:2301-24. https://doi.org/10.1016/j.watres.2007.03.012 DOI: https://doi.org/10.1016/j.watres.2007.03.012

Yin CY. Emerging usage of plant-based coagulants for water and wastewater treatment. Murdoch Univ. 2010;45:1437-44. https://doi.org/10.1016/j.procbio.2010.05.030 DOI: https://doi.org/10.1016/j.procbio.2010.05.030

Amran AH, Zaidi NS, Muda K, Loan LW. Effectiveness of natural coagulant in coagulation process: A review. Int J Eng Technol. 2018;7:34. https://doi.org/10.14419/ijet.v7i3.9.15269 DOI: https://doi.org/10.14419/ijet.v7i3.9.15269

Järnström L, Lason L, Rigdahl M. Flocculation in kaolin suspensions induced by modified starches 1. Cationically modified starch-effects of temperature and ionic strength. Colloids Surf A Physicochem Eng Aspects. 1995;104:191-205. https://doi.org/10.1016/0927-7757(95)03270-5 DOI: https://doi.org/10.1016/0927-7757(95)03270-5

Duan J, Gregory J. Coagulation by hydrolysing metal salts. Adv Colloid Interface Sci. 2003;100-102:475-502. https://doi.org/10.1016/S0001-8686(02)00067-2 DOI: https://doi.org/10.1016/S0001-8686(02)00067-2

Almonaityte K, Bendoraitiene J, Babelyte M, Rosliuk D, Rutkaite R. Structure and properties of cationic starches synthesized by using 3-chloro-2-hydroxypropyltrimethylammonium chloride. Int J Biol Macromol. 2020;164:2010-7. https://doi.org/10.1016/j.ijbiomac.2020.08.089 DOI: https://doi.org/10.1016/j.ijbiomac.2020.08.089

Villabona-Ortíz A, Tejada-Tovar C, Toro RO. Comparative study of the use of starch from agro-industrial materials in the coagulation-flocculation process. Rev Mex Ingenier Quím 2020;12:505-11.

Downloads

Published

2022-03-25

How to Cite

1.
Yushananta P, Ahyanti M. Novel Copolymer Cationic from Agroindustrial Waste using Microwave. Open Access Maced J Med Sci [Internet]. 2022 Mar. 25 [cited 2024 Nov. 21];10(E):458-64. Available from: https://oamjms.eu/index.php/mjms/article/view/8126

Issue

Section

Public Health Disease Control

Categories