Bacterial Patterns and Sensitivity to Antibiotics in Patients Treated with Ventilators at the Intensive Care Unit of Sanglah Hospital Denpasar, Bali, Indonesia
DOI:
https://doi.org/10.3889/oamjms.2022.8139Keywords:
Ventilator, Microbial Pattern, Antibiotics, Sensitivity, ResistanceAbstract
Abstract
BACKGROUND: Ventilator use to treat patients with respiratory failure in the Intensive Care Unit (ICU) is crucial to prevent further organ failure caused by inadequate oxygenation. However, as an invasive procedure, the use of a ventilator could lead to nosocomial infection, such as Ventilator-Associated Pneumonia (VAP) caused by opportunistic microorganisms in the ICU. Hence, the author is interested in finding the microbial patterns and its antibiotic sensitivity as a source of data for further researches and providing consideration on antibiotics usage for patients treated with ventilators in the ICU of Sanglah Hospital Denpasar.
AIM: This study is conducted to obtain the microbial pattern and antibiotics sensitivity on patients treated with ventilators in the ICU of Sanglah Hospital Denpasar.
MATERIALS AND METHODS: This research is based on the cross-sectional descriptive method. Research samples were chosen with consecutive sampling that is included in the research’s inclusion criteria. Patient data were collected from the 1st January 2021 to 30th June 2021 within the ICU of Sanglah Hospital Denpasar. Variables in this research were listed as followed: demographic data of the patients that include age, gender, comorbid, diagnosis, ventilator usage indication, bacterial culture, and bacterial susceptibility test.
RESULTS: 185 culture samples were obtained from 113 patients. 18 different species of bacterias were found with the three most common microorganisms being Pseudomonas aeruginosa (22.2%), Acinetobacter baumanii (20%), and Klebsiella pneumoniae (17.3%). Susceptibility pattern found as follows: The prevalence of P aeruginosa was found sensitive towards ceftazidime (68,3%), gentamicin (68,3%), and amikacin (65,9%), A. Baumanii are mostly sensitive to amikacin (56,8%), gentamicin (32,4%), and tigecyline (32,4%), K. Pneumoniae are mostly sensitive to amikacin (83,9%), meropenem (77,4%), and piperacillin/tazobactam (54,8%). Resistance pattern found as follows: The prevalence of P aeruginosa was found resistant towards cefixime (70,7%), cefazolin (58,5%), and cefuroxime (58,5%), A. baumanii are mostly resistant to cefixime (86,5%), cefoperazone (81,1%), and piperacillin/tazobactam (75,7%), K. pneumoniae are mostly resistant to ciprofloxacin (61,3%) and levofloxacin (48,4%).
CONCLUSION: To decrease the spreading of multi-drug resistant organisms that have been found in ventilated patients, prevention strategies and rational use of antibiotics needs to be performed correctly.
Key-words: Ventilator, microbial pattern, antibiotics, sensitivity, resistance
Downloads
Metrics
Plum Analytics Artifact Widget Block
References
Marshall J, Bosco L, Adhikari N, Connolly B, Diaz J, Dorman T, et al. What is an intensive care unit? A report of the task force of the world federation of societies of intensive and critical care medicine. J Crit Care. 2017;37:270-6. https://doi.org/10.1016/j.jcrc.2016.07.015 PMid:27612678 DOI: https://doi.org/10.1016/j.jcrc.2016.07.015
Mujahidin M. Extra corporeal membrane oxygenation (ECMO) pada pasien extra corporeal membrane oxygenation (ECMO) adult. J Anestesi Indones. 2016;8(3):151.
Pham T, Brochard L, Slutsky A. Mechanical ventilation: State of the art. Mayo Clin Proc. 2017;92(9):1382-400. https://doi.org/10.1016/j.mayocp.2017.05.004 PMid:28870355 DOI: https://doi.org/10.1016/j.mayocp.2017.05.004
Mirtalaei N, Farazi A, Monfared ME, Jokar A. Efficacy of antibiotic prophylaxis against ventilator-associated pneumonia. J Hosp Infect. 2018;101(3):272-5. https://doi.org/10.1016/j.jhin.2018.08.017 PMid:30179656 DOI: https://doi.org/10.1016/j.jhin.2018.08.017
Kumari M, Rastogi N, Malhotra R, Mathur P. Clinico-microbiological profile of healthcare associated pneumonia in critically ill patients at level-I trauma centre of India. J Lab Physicians. 2018;10(4):406-9. https://doi.org/10.4103/JLP.JLP_85_18 PMid:30498312 DOI: https://doi.org/10.4103/JLP.JLP_85_18
Saiphoklang N, Kanitsap A, Ruchiwit P, Pirompanich P, Sricharoenchai T, Cooper C. Patient characteristics and outcomes of a home mechanical ventilation program in a developing country. Lung India. 2019;36(3):207-201. https://doi.org/10.4103/lungindia.lungindia_219_18 PMid:31031340 DOI: https://doi.org/10.4103/lungindia.lungindia_219_18
Kubler A, Maciejewski D, Adamik B, Kaczorowska M. Mechanical ventilation in ICUs in Poland: A multi-center point-prevalence study. Med Sci Monit. 2013;19:424-9. https://doi.org/10.12659/MSM.883930 PMid:23727991 DOI: https://doi.org/10.12659/MSM.883930
Al-Taki M, Sukkarieh H, Hoballah J, Jamali S, Habbal M, Masrouha K, et al. Effect of gender on postoperative morbidity and mortality outcomes: A retrospective cohort study. Am Surg. 2018;84(3):377-86. PMid:29559052 DOI: https://doi.org/10.1177/000313481808400321
Kalil A, Metersky M, Klompas M, Muscedere J, Sweeney D, Palmer L, et al. Management of adults with hospital-acquired and ventilator-associated pneumonia: 2016 Clinical practice guidelines by the infectious diseases society of america and the American thoracic society. Clin Infect Dis. 2016;63(5):e61-111. https://doi.org/10.1093/cid/ciw353 PMid:27418577 DOI: https://doi.org/10.1093/cid/ciw353
Rello J, Ramirez Estrada S, Borgatta B. Pseudomonas aeruginosa ventilator-associated pneumonia management. Infect Drug Resist. 2016;9:7-18. https://doi.org/10.2147/IDR. S50669 PMid:26855594 DOI: https://doi.org/10.2147/IDR.S50669
Exner M, Bhattacharya S, Chrstiansen B, Gebel J, Goroncy- Bermes P, Hartemann P, et al. Antibiotic resistance: What is so special about multidrug-resistant Gram-negative bacteria? GMS Hyg Infect Control. 2017;12(5):Doc05. https://doi.org/10.3205/dgkh000290 PMid:28451516
Zhou Y, Yu F, Yu Y, Zhang Y, Zhang Y. Clinical significance of MDRO screening and infection risk factor analysis in the ICU. Am J Transl Res. 2021;13(4):3717-23. PMid:34017556
Grgurich P, Hudcova J, Lei Y, Sarwar A, Craven D. Management and prevention of ventilator-associated pneumonia caused by multidrug-resistant pathogens. Exp Rev Respir Med. 2012;6(5):533-55. https://doi.org/10.1586/ers.12.45 PMid:23134248 DOI: https://doi.org/10.1586/ers.12.45
Widyaningsih R, Buntaran L. Bacterial Patterns of Ventilator Associated Pneumonia (VAP) and Sensitivity towards Antibiotics at RSAB Harapan Kita. Sari Pediatri. 2016;13(6):384. DOI: https://doi.org/10.14238/sp13.6.2012.384-90
Ullah H, Javeid I, Khalid K, Muhammad H, Sahrish J. Ullah HA, et al. In vitro comparative study of cefoperazone, ceftazidime, ceftizoxime, cefotaxime, ceftriaxone and cefixime against pseudomonas aeruginosa. Int Res J Pharm. 2013;4(1):136.
Rhodes N, Cruce C, O’Donnell J, Wunderink R, Hauser A. Resistance trends and treatment options in gram-negative ventilator-associated pneumonia. Curr Infect Dis Rep. 2018;20(2):3. https://doi.org/10.1007/s11908-018-0609-x PMid:29511909 DOI: https://doi.org/10.1007/s11908-018-0609-x
Mishra D, Shah D, Shah N, Prasad J, Gupta P, Agrawaal K. Study of microbiological and antibiotic sensitivity pattern of ventilator associated pneumonia (VAP) in ICU of a tertiary care hospital in Nepal. J Family Med Prim Care. 2020;9(12):6171-6. https://doi.org/10.4103/jfmpc.jfmpc_1430_20 PMid:33681059 DOI: https://doi.org/10.4103/jfmpc.jfmpc_1430_20
Kuti JL, Wang Q, Chen H, Li H, Wang H, Nicolau D. Defining the potency of amikacin against Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Acinetobacter baumannii derived from Chinese hospitals using CLSI and inhalation-based breakpoints. Infect Drug Resist. 2018;25(11):783-90. https://doi.org/10.2147/idr.s161636 PMid:29872328 DOI: https://doi.org/10.2147/IDR.S161636
Shodikin M, Ramadhanty M, Semita I. Bacterial identification and antibiotics sensitivity of ventilator-associated pneumonia (VAP) patients at RSD Dr. Soebandi Jember. J Health Sci. 2021;14(2):103-11. https://doi.org/10.33086/jhs.v14i02.1891 DOI: https://doi.org/10.33086/jhs.v14i02.1891
Luyt C, Sahnoun T, Gautier M, Vidal P, Burrel S, de Chambrun MP, et al. Ventilator-associated pneumonia in patients with SARS-CoV-2-associated acute respiratory distress syndrome requiring ECMO: A retrospective cohort study. Ann Intensive Care. 2020;10(1):158. https://doi.org/10.1186/s13613-020-00775-4 PMid:33230710 DOI: https://doi.org/10.1186/s13613-020-00775-4
Herdwiyanti M, Alisjahbana B, Santoso P. Patterns and Sensitivity of Sputum Bacterial Culture and The Characteristics of Pneumonia Patients in RSUP Dr. Hasan Sadikin Bandung. Tunas Med J Kedokteran Kesehatan. 2021;7(1):1-6.
Meini S, Tascini C, Cei M, Sozio E, Rossolini G. AmpC β-lactamase-producing Enterobacterales: What a clinician should know. Infection. 2019;47(3):363-75. https://doi.org/10.1007/s15010-019-01291-9 PMid:30840201 DOI: https://doi.org/10.1007/s15010-019-01291-9
Tsai H, Chen Y, Tang H, Huang C, Liao C, Chu F, et al. Carbapenems and piperacillin/tazobactam for the treatment of bacteremia caused by extended-spectrum β-lactamase-producing Proteus mirabilis. Diagn Microbiol Infect Dis. 2014;80(3):222-6. https://doi.org/10.1016/j.diagmicrobio.2014.07.006 PMid:25139843 DOI: https://doi.org/10.1016/j.diagmicrobio.2014.07.006
Downloads
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2022 Mark Kevin Devian, I Wayan Suranadi, I Gusti Agung Gede Utara Hartawan, I Wayan Aryabiantara (Author)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
http://creativecommons.org/licenses/by-nc/4.0