Breast Cancer Human Epidermal Growth Factor Receptor 2 mRNA Molecular Testing Compared to Immunohistochemistry with Correlation to Neoadjuvant Therapy Response
DOI:
https://doi.org/10.3889/oamjms.2022.8165Keywords:
Breast cancer, Immunohistochemistry, mRNA, Human epidermal growth factor receptor 2Abstract
BACKGROUND: Breast cancer is the most common cancer type among women worldwide. Human epidermal growth factor receptor 2 (HER-2) is amplified in 10–34% of breast carcinomas and offers a therapeutic option from HER2-targeted therapy. Hence, HER2 is tested routinely in all breast cancer patients using immunohistochemistry (IHC) and in situ hybridization. Yet, some pitfalls do exist due to tumoral heterogeneity, inter and intrapersonal variations. mRNA expression assays can provide an alternative method for accurately measuring HER-2 avoiding these limitations.
AIM: Comparing results of mRNA gene expression analysis for HER2 with IHC results and correlating it with the therapy response.
MATERIALS AND METHODS: One hundred breast cancer core biopsies were tested for HER-2 using IHC and the same blocks were sectioned and tested for mRNA gene expression for HER2 by the Xpert breast cancer STRAT4 device.
RESULTS: Concordance rate between mRNA expression and IHC for HER-2 was 93% with Kappa measurement showing perfect agreement (κ = 0.81, 95% CI, p < 0.0005).
CONCLUSION: The study reveals high concordance between HER2 measurement using IHC and mRNA analysis. Molecular testing can provide an effective standardized method for HER-2 measurement in breast cancer patients.Downloads
Metrics
Plum Analytics Artifact Widget Block
References
Torre LA, Siegel RL, Ward EM, Jemal A. Global cancer incidence and mortality rates and trends-an update. Cancer Epidemiol Biomarkers Prev. 2016;25(1):16-27. https://doi.org/10.1158/1055-9965.EPI-15-0578 PMid:26667886 DOI: https://doi.org/10.1158/1055-9965.EPI-15-0578
Coates AS, Winer EP, Goldhirsch A, Gelber RD, Gnant M, Piccart-Gebhart M, et al. Tailoring therapies-improving the management of early breast cancer: St Gallen international expert consensus on the primary therapy of early breast cancer 2015. Ann Oncol. 2015;26(8):1533-46. https://doi.org/10.1093/annonc/mdv221 PMid:25939896 DOI: https://doi.org/10.1093/annonc/mdv221
Ahn S, Woo JW, Lee K, Park SY. HER2 status in breast cancer: Changes in guidelines and complicating factors for interpretation. J Pathol Transl Med. 2020;54(1):34-44. https://doi.org/10.4132/jptm.2019.11.03 PMid:31693827 DOI: https://doi.org/10.4132/jptm.2019.11.03
Tandon AK, Clark GM, Chamness GC, Ullrich A, McGuire WL. HER-2/neu oncogene protein and prognosis in breast cancer. J Clin Oncol. 1989;7(8):1120-8. https://doi.org/10.1200/JCO.1989.7.8.1120 PMid:2569032 DOI: https://doi.org/10.1200/JCO.1989.7.8.1120
Patel A, Unni N, Peng Y. The changing paradigm for the treatment of HER2-positive breast cancer. Cancers (Basel). 2020;12(8):2081. https://doi.org/10.3390/cancers12082081 PMid:32731409 DOI: https://doi.org/10.3390/cancers12082081
Cancello G, Maisonneuve P, Rotmensz N, Viale G, Mastropasqua MG, Pruneri G, et al. Prognosis and adjuvant treatment effects in selected breast cancer subtypes of very young women (< 35 years) with operable breast cancer. Ann Oncol. 2010;21(10):1974-81. https://doi.org/10.1093/annonc/mdq072 PMid:20332136 DOI: https://doi.org/10.1093/annonc/mdq072
Roepman P, Horlings HM, Krijgsman O, Kok M, Bueno-de- Mesquita JM, Bender R, et al. Microarray-based determination of estrogen receptor, progesterone receptor, and HER2 receptor status in breast cancer. Clin Cancer Res. 2009;15(22):7003-11. https://doi.org/10.1158/1078-0432.CCR-09-0449 PMid:19887485 DOI: https://doi.org/10.1158/1078-0432.CCR-09-0449
Lakhani SR, Ellis IO, Schnitt SJ, Tan PH, van de Vijver MJ, editors.WHO Classification of Tumors of the Breast. 4th ed. IARC: Lyon; 2012.
ASCO/CAP guidelines 2018 for HER2 Testing; 2018. Available from: https://www.asco.org/sites/new-www.asco.org/files/contentfiles/practiceand-guidelines/documents/2018-her2-testing-summary-table.pdf. [Last accessed on 2021 Sep 25].
Constantinou C, Papadopoulos S, Karyda E, Alexopoulos A, Agnanti N, Batistatou A, et al. Expression and clinical significance of claudin-7, PDL-1, PTEN, c-Kit, c-Met, c-Myc, ALK, CK5/6, CK17, p53, EGFR, Ki67, p63 in triple-negative breast cancer-a single centre prospective observational study. In Vivo. 2018;32(2):303-11. https://doi.org/10.21873/invivo.11238 PMid:29475913 DOI: https://doi.org/10.21873/invivo.11238
Olfatbakhsh A, Tafazzoli-Harandi H, Najafi S, Hashemi EA, Sari F, Mokhtari Hesari P, et al. Factors impacting pathologic complete response after neoadjuvant chemotherapy in breast cancer: A single-center study. Int J Cancer Manag. 2018;11(5):e60098. Available from: https://www.sites.kowsarpub.com/ijcm/articles/60098.html. https://doi.org/10.5812/ijcm.60098 DOI: https://doi.org/10.5812/ijcm.60098
Kizy S, Huang JL, Marmor S, Blaes A, Yuan J, Beckwith H, et al. Distribution of 21-gene recurrence scores among breast cancer histologic subtypes. Arch pathol Lab Med. 2018;142(6):735-41. https://doi.org/10.5858/arpa.2017-0169-OA PMid:29528718 DOI: https://doi.org/10.5858/arpa.2017-0169-OA
Kumarapeli AR, Bellamy W, Olgaard E, Massoll N, Korourian S. Short-duration rapid chilling of mastectomy specimens does not interfere with breast cancer biomarker and molecular testing. Arch Pathol Lab Med. 2019;143(1):92-8. https://doi.org/10.5858/arpa.2017-0377-OA PMid:29932859 DOI: https://doi.org/10.5858/arpa.2017-0377-OA
Ho-Yen CM, Jones JL, Kermorgant S. The clinical and functional significance of c-Met in breast cancer: A review. Breast Cancer Res. 2015;17(1):52. https://doi.org/10.1186/s13058-015-0547-6 PMid:25887320 DOI: https://doi.org/10.1186/s13058-015-0547-6
Zagouri F, Bago-Horvath Z, Rössler F, Brandstetter A, Bartsch R, Papadimitriou CA, et al. High MET expression is an adverse prognostic factor in patients with triple-negative breast cancer. Br J Cancer. 2013;108(5):1100-5. https://doi.org/10.1038/bjc.2013.31 PMid:23422757 DOI: https://doi.org/10.1038/bjc.2013.31
Wasserman BE, Carvajal-Hausdorf DE, Ho K, Wong W, Wu N, Chu VC, et al. High concordance of a closed-system, RT-qPCR breast cancer assay for HER2 mRNA, compared to clinically determined immunohistochemistry, fluorescence in situ hybridization, and quantitative immunofluorescence. Lab Invest. 2017;97(12):1521-6. https://doi.org/10.1038/labinvest.2017.93 PMid:28892092 DOI: https://doi.org/10.1038/labinvest.2017.93
Denkert C, Link T, Jank P, Just M, Hanusch C, Brasch F, et al. Comparison of an Automated Cartridge-Based System for mRNA Assessment with Central Immunohistochemistry in the Neoadjuvant GeparX Trial. Available from: https://www.researchgate.net/profile/Paul-Jank/publication/333407035. [Last accessed on 2021 Sep 25].
Filipits M, Rudas M, Singer CF, Fitzal F, Bago-Horvath Z, Greil R, et al. ESR1, PGR, ERBB2, and MKi67 mRNA expression in postmenopausal women with hormone receptor-positive early breast cancer: Results from ABCSG trial 6. ESMO Open. 2021;6(4):100228. https://doi.org/10.1016/j.esmoop.2021.100228 PMid:34371382 DOI: https://doi.org/10.1016/j.esmoop.2021.100228
Mugabe M, Ho KE, Ruhangaza D, Milner D, Rugwizangoga B, Chu VC, et al. Use of the Xpert breast cancer STRAT4 for biomarker evaluation in tissue processed in a developing country. Am J Clin Pathol. 2021;156(5):766-76. https://doi.org/10.1093/ajcp/aqab016 PMid:34050358 DOI: https://doi.org/10.1093/ajcp/aqab016
Janeva S, Parris TZ, Nasic S, de Lara S, Larsson K, Audisio RA, et al. Comparison of breast cancer surrogate subtyping using a closed-system RT-qPCR breast cancer assay and immunohistochemistry on 100 core needle biopsies with matching surgical specimens. BMC Cancer. 2021;21(1):439. https://doi.org/10.1186/s12885-021-08171-2 PMid:33879115 DOI: https://doi.org/10.1186/s12885-021-08171-2
Wu NC, Wong W, Ho KE, Chu VC, Rizo A, Davenport S, et al. Comparison of central laboratory assessments of ER, PR, HER2, and Ki67 by IHC/FISH and the corresponding mRNAs (ESR1, PGR, ERBB2, and MKi67) by RT-qPCR on an automated, broadly deployed diagnostic platform. Breast Cancer Res Treat. 2018;172(2):327-38. https://doi.org/10.1007/s10549-018-4889-5 PMid:30120700 DOI: https://doi.org/10.1007/s10549-018-4889-5
Gupta S, Mani NR, Carvajal-Hausdorf DE, Bossuyt V, Ho K, Weidler J, et al. Macrodissection prior to closed system RT-qPCR is not necessary for estrogen receptor and HER2 concordance with IHC/FISH in breast cancer. Lab Invest. 2018;98(8):1076-83. https://doi.org/10.1038/s41374-018-0064-1 PMid:29858579 DOI: https://doi.org/10.1038/s41374-018-0064-1
Bel C. Comparaison de L’évaluation Des Récepteurs Hormonaux, du Ki67 et de Her2 Par le Kit STRAT4 (RT-qPCR) et L’immunohistochimie Dans le Cancer du Sein. Available from: https://www.hal.uca.fr/dumas-02383163v1. [Last accessed on 2021 Sep 25].
Silver DP, Richardson AL, Eklund AC, Wang ZC, Szallasi Z, Li Q, et al. Efficacy of neoadjuvant Cisplatin in triple-negative breast cancer. J Clin Oncol. 2010;28(7):1145-53. https://doi.org/10.1200/JCO.2009.22.4725 PMid:20100965 DOI: https://doi.org/10.1200/JCO.2009.22.4725
Zhao Y, Dong X, Li R, Ma X, Song J, Li Y, et al. Evaluation of the pathological response and prognosis following neoadjuvant chemotherapy in molecular subtypes of breast cancer. Onco Targets Ther. 2015;8:1511-21. https://doi.org/10.2147/OTT.S83243 PMid:26150728 DOI: https://doi.org/10.2147/OTT.S83243
Downloads
Published
How to Cite
License
Copyright (c) 2022 Mahmoud Behairy, Samia Mohamed Gabal, Mohamed Sherif Negm (Author)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
http://creativecommons.org/licenses/by-nc/4.0