Evaluation of the Effects of One versus 4 Weeks Activation Intervals on the Rate of Orthodontic Tooth Movement: An Experimental Study
DOI:
https://doi.org/10.3889/oamjms.2022.8169Keywords:
Canine retraction, Tooth movement, Elastomeric chain, Reactivation interval, Intermittent forceAbstract
Objectives: To evaluate the effects of one versus four weeks reactivation of the elastomeric chain on the rate of orthodontic tooth movement (OTM) and supporting structures.
Methods: The 3rd maxillary premolars of 8 male mongrel dogs were extracted. Custom made appliance was constructed so that the 2nd premolars were allowed to slide bodily. An elastomeric chain with calibrated force of 150g was attached to the hooks of soldered tubes on the 2nd premolar’s crowns. The sample was divided into two groups based on the interval of reactivation of the elastomeric chains used for tooth movement where in group I activation was scheduled every one week versus four weeks in group II. Measurements of the amount and rate of OTM were performed every week for 12 weeks using digital caliper. The animals were then sacrificed and specimens were prepared for decalcified histological examination using Hematoxylin and Eosin stains under light microscope.
Results: No remarkable difference in the rate of OTM between the two groups was reported. The total amount of tooth movement in group I was 1.44mm ± 0.5 compared to 1.46mm ± 0.6 in group II. Histological examination revealed a more favorable tissue reaction associated with 4 weeks reactivation as regards the new formed bone, root resorption and periodontal ligament structure.
Conclusion: Altering the reactivation interval of the elastomeric chains from four to one week doesn’t have a significant impact on the rate of OTM. However, four weeks reactivation interval showed a more favorable tissue reaction associated with orthodontic tooth movement.
Downloads
Metrics
Plum Analytics Artifact Widget Block
References
Proffit WR, Fields HW, Sarver DM. Contemporary Orthodontics. St. Louis: Mosby Elsevier; 2007.
Krishnan V, Davidovitch Z. Cellular, molecular, and tissue-level reactions to orthodontic force. Am J Orthod Dentofac Orthop. 2006;129(4):469.e1-32. https://doi.org/10.1016/j.ajodo.2005.10.007 PMid:16627171 DOI: https://doi.org/10.1016/j.ajodo.2005.10.007
Ren Y, Maltha JC, Kuijpers-Jagtman AM. Optimum force magnitude for orthodontic tooth movement: A systematic literature review. Angle Orthod. 2003;73(1):86-92. https://doi.org/10.1043/0003-3219(2003)073<0086:OFMFOT>2.0.CO;2 PMid:12607860
Bancroft JD, Gamble M. Theory and Practice of Histological Techniques. Philadelphia, PA: Elsevier Health Sciences; 2008.
Reinwald S, Burr D. Review of nonprimate, large animal models for osteoporosis research. J Bone Miner Res. 2008;23(9):1353-68. https://doi.org/10.1359/jbmr.080516 PMid:18505374 DOI: https://doi.org/10.1359/jbmr.080516
Ren Y, Maltha JC, Van’t Hof MA, Kuijpers-Jagtman AM. Optimum force magnitude for orthodontic tooth movement: A mathematic model. Am J Orthod Dentofac Orthop. 2004;125(1):71-7. https://doi.org/10.1016/j.ajodo.2003.02.005 PMid:14718882 DOI: https://doi.org/10.1016/j.ajodo.2003.02.005
Ibrahim AY, Gudhimella S, Pandruvada SN, Huja SS. Resolving differences between animal models for expedited orthodontic tooth movement. Orthod Craniofacial Res. 2017;20:72-6. https://doi.org/10.1111/ocr.12175 PMid:28643903 DOI: https://doi.org/10.1111/ocr.12175
Nakamoto N, Nagasaka H, Daimaruya T, Takahashi I, Sugawara J, Mitani H. Experimental tooth movement through mature and immature bone regenerates after distraction osteogenesis in dogs. Am J Orthod Dentofac Orthop. 2002;121(4):385-95. https://doi.org/10.1067/mod.2002.122368 PMid:11997763 DOI: https://doi.org/10.1067/mod.2002.122368
El Sharaby FA, El Bokle NN, El Boghdadi DM, Mostafa YA. Tooth movement into distraction regenerate: When should we start? Am J Orthod Dentofac Orthop. 2011;139(4):482-94. https://doi.org/10.1016/j.ajodo.2009.05.041 PMid:21457859 DOI: https://doi.org/10.1016/j.ajodo.2009.05.041
Farid KA, Mostafa YA, Kaddah MA, El-Sharaby FA. Corticotomy-facilitated orthodontics using piezosurgery versus rotary instruments: An experimental study. J Int Acad Periodontol. 2014;16(4):103-8. PMid:25654963
Mabula F, Zhuang Y, Guo W, You D, Lin S. Effects of bone regeneration materials and tooth movement timing on canine experimental orthodontic treatment. 2018;88(2):171-8. https://doi.org/10.2319/062017-407 PMid:29154676 DOI: https://doi.org/10.2319/062017-407
Ma Z, Wang Z, Zheng J, Chen X, Xu W, Zou D, et al. Timing of force application on buccal tooth movement into bone-grafted alveolar defects: A pilot study in dogs. Am J Orthod Dentofac Orthop. 2020;159(2):e123-34. https://doi.org/10.1016/j.ajodo.2020.09.010 PMid:33342675 DOI: https://doi.org/10.1016/j.ajodo.2020.09.010
Rashid A, ElSharaby FA, Nassef EM, Mehanni S, Mostafa YA. Effect of platelet-rich plasma on orthodontic tooth movement in dogs. Orthod Craniofacial Res. 2017;20(2):102-10. https://doi.org/10.1111/ocr.12146 PMid:28414871 DOI: https://doi.org/10.1111/ocr.12146
Pilon JJ, Kuijpers-Jagtman AM, Maltha JC. Magnitude of orthodontic forces and rate of bodily tooth movement. An experimental study. Am J Orthod Dentofacial Orthop. 1996;110(1):16-23. https://doi.org/10.1016/ S0889-5406(96)70082-3 PMid:8686673 DOI: https://doi.org/10.1016/S0889-5406(96)70082-3
Nakano T, Hotokezaka H, Hashimoto M, Sirisoontorn I, Arita K, Kurohama T, et al. Effects of different types of tooth movement and force magnitudes on the amount of tooth movement and root resorption in rats. Angle Orthod. 2014;84(6):1079-85. https://doi.org/10.2319/121913-929.1 PMid:24754797 DOI: https://doi.org/10.2319/121913-929.1
Yee JA, Türk T, Elekdağ-Türk S, Cheng LL, Darendeliler MA. Rate of tooth movement under heavy and light continuous orthodontic forces. 2009;136(2):150.e1-9; discussion 150-1. https://doi.org/10.1016/j.ajodo.2009.03.026 PMid:19651334 DOI: https://doi.org/10.1016/j.ajodo.2008.06.027
Von Böhl M, Maltha J, Von Den Hoff H, Kuijpers-Jagtman AM. Changes in the periodontal ligament after experimental tooth movement using high and low continuous forces in beagle dogs. Angle Orthod. 2004;74(1):16-25. https://doi.org/10.1043/0003-3219(2004)074<0016:CITPLA>2.0.CO;2 PMid:15038486
Van Leeuwen EJ, Kuijpers-Jagtman AM, Von den Hoff JW, Wagener FA, Maltha JC. Rate of orthodontic tooth movement after changing the force magnitude: An experimental study in beagle dogs. Orthod Craniofacial Res. 2010;13(4):238-45. https://doi.org/10.1111/j.1601-6343.2010.01500.x PMid:21040467 DOI: https://doi.org/10.1111/j.1601-6343.2010.01500.x
Choube A, Astekar M, Choube A, Sapra G, Agarwal A, Rana A. Comparison of decalcifying agents and techniques for human dental tissues comparison of decalcifying agents and techniques for human dental tissues. Biotech Histochem. 2018;93(2):99-108. https://doi.org/10.1080/10520295.2017.1396095 PMid:29313383 DOI: https://doi.org/10.1080/10520295.2017.1396095
Mostafa YA, Fayed MM, Mehanni S, El Bokle NN, Heider AM. Comparison of corticotomy-facilitated vs standard tooth-movement techniques in dogs with miniscrews as anchor units. Am J Orthod Dentofac Orthop. 2009;136(4):570-7. https://doi.org/10.1016/j.ajodo.2007.10.052 PMid:19815161 DOI: https://doi.org/10.1016/j.ajodo.2007.10.052
Kim Y, Kim S, Yoon H, Lee PJ, Moon W, Park Y. Effect of piezopuncture on tooth movement and bone remodeling in dogs. Am J Orthod Dentofac Orthop. 2013;144(1):23-31. https://doi.org/10.1016/j.ajodo.2013.01.022 PMid:23810042 DOI: https://doi.org/10.1016/j.ajodo.2013.01.022
Dixon V, Read MJ, Brien KD, Worthington HV, Mandall NA. A randomized clinical trial to compare three methods of orthodontic space closure. J Orthod. 2002;29(1):31-6. https://doi.org/10.1093/ortho/29.1.31 PMid:11907307 DOI: https://doi.org/10.1093/ortho/29.1.31
Article O. Acceleration of orthodontic tooth movement by alveolar corticotomy in the dog. Am J Orthod Dentofacial Orthop. 2007;131(4):448.e1-8. https://doi.org/10.1016/j.ajodo.2006.08.014 PMid:17418709 DOI: https://doi.org/10.1016/j.ajodo.2006.08.014
Lodaya SD. Orthodontic force distribution: A three-dimensional finite element analysis. World J Dent. 2010;1(3):159-62. DOI: https://doi.org/10.5005/jp-journals-10015-1032
Husain N, Kumar A. Frictional resistance between orthodontic brackets and archwire: An in vitro study. J Contemp Dent Pract. 2011;12(2):91-9. https://doi.org/10.5005/jp-journals-10024-1015 PMid:22186750 DOI: https://doi.org/10.5005/jp-journals-10024-1015
Halimi A, Azeroual MF, Doukkali A, El Mabrouk K, Zaoui F. Elastomeric chain force decay in artificial saliva: An in vitro study. Int Orthod. 2013;11(1):60-70. https://doi.org/10.1016/j.ortho.2012.12.007 PMid:23375920 DOI: https://doi.org/10.1016/j.ortho.2012.12.007
Downloads
Published
How to Cite
License
Copyright (c) 2022 Mahmoud Elseidy, Yehya A. Mostafa, Sammah S. Mehanni, Fouad A. El-Sharaby (Author)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
http://creativecommons.org/licenses/by-nc/4.0