Effect of Different Solvent on Phytochemical Content, Tyrosinase Inhibition and Antioxidant Activities of Campolay (Pouteria campechiana kunth. [Baehni.])


  • Sani Nurlaela Fitriansyah Department of Pharmaceutical Biology, School of Pharmacy, Bandung Institute of Technology, Bandung, Indonesia; Department of Pharmaceutical Biology, Indonesian School of Pharmacy (Sekolah Tinggi Farmasi Indonesia), Bandung, Indonesia https://orcid.org/0000-0003-4613-5616
  • Rika Hartati Department of Pharmaceutical Biology, School of Pharmacy, Bandung Institute of Technology, Bandung, Indonesia
  • Irda Fidrianny Department of Pharmaceutical Biology, School of Pharmacy, Bandung Institute of Technology, Bandung, Indonesia




Pouteria campechiana, Tyrosinase, Antioxidant, Quercitrin


BACKGROUND: Pouteria campechiana leaves are reported to have phenol and flavonoid compounds. Phenolic and flavonoid compounds can act as tyrosinase inhibitor and antioxidant.

AIM: The purpose of this study was to compare phytochemical content, tyrosinase inhibition, antioxidant activities, and determine of marker compound from P. campechiana leaves extract with different polarities solvent.

METHODS: In addition, the content of marker compound from P. campechaina leaves extract was determined by HPLC.

RESULTS: The highest total phenolic content (TPC) 7.83 GAE/100 g extract, IC50 of tyrosinase 171.512 ± 1.352 and IC50 of DPPH 0.968 ± 0.008 was given by ethanolic extract (DE). Meanwhile ethyl acetate extract (DEA) had the highest of total flavonoid content 2.544 ± 0.554 QEA/100 g extract. The TPC correlated with tyrosinase inhibitory activity and antioxidant activity.

CONCLUSION: Quercitrin was as marker compound from P. campechiana leaves extract, and quercitrin content in the DEA of P. campechiana leaves was 3.539%, while in the DE was 0.153%.


Download data is not yet available.


Metrics Loading ...

Plum Analytics Artifact Widget Block


Chunhakant S, Chaicharoenpong C. Antityrosinase, antioxidant, and cytotoxic activities of phytochemical constituents from Manilkara zapota L. Bark. Molecule. 2019;2798(24):1-19. https://doi.org/10.3390/molecules24152798 PMid:31370334 DOI: https://doi.org/10.3390/molecules24152798

Muddathir AM, Yamuchi K, Batubara I, Mohieldin EA, Mitsunaga T. Anti-tyrosinase, total phenolic content and antioxidant activity of selected Sundanese medicinal plant. South Afr J Bot. 2017;l09:9-15. http://dx.doi.org/10.1016/j.sajb.2016.12.013 DOI: https://doi.org/10.1016/j.sajb.2016.12.013

Prota G. An introduction to melanin research. In: Prota, G. editor. Melanins and Melanogenesis. San Diego, CA, USA: Academic Press; 1992. p. 1-9. DOI: https://doi.org/10.1016/B978-0-12-565970-3.50007-8

Ferrer S, Lopez AR, Carmon JG. Tyrosinase: A comprehensive review of its mechanism. Biochim Biophys Acta. 1995;1247(1):1-11. https://doi.org/10.1016/0167-4838(94)00204-t PMid:7873577 DOI: https://doi.org/10.1016/0167-4838(94)00204-T

Kumar S, Pandey AK. Chemistry and biological activities of flavonoids: An overview. Sci World J. 2013;2013:162750. https://doi.org/10.1155/2013/162750 PMid:24470791 DOI: https://doi.org/10.1155/2013/162750

Batubara I, Darusman LK, Mitsunaga T, Rahminiwati M, Djauhari E. Potency of Indonesian medicinal plants as tyrosinase inhibitor and antioxidant agent. J Biol Sci. 2010;10(2):138-44. https://doi.org/10.3923/jbs.2010.138.144 DOI: https://doi.org/10.3923/jbs.2010.138.144

Saraswaty V, Suparta NW, Setiyanto H, Rachmawati H, Adnyana IK. Transformation of melinjo seed micropowders into nanopowder enhances extractability of phenolic compounds and tyrosinase inhibitory activity. Sains Malaysiana. 2019;48(5):983-90. https://doi.org/10.17576/jsm-2019-4805-06 DOI: https://doi.org/10.17576/jsm-2019-4805-06

Ma J, Yang H, Basile MJ, Kennelly EJ. Analysis of polyphenolic antioxidants from the fruit of three Pouteria species by selected ion monitoring liquid chromatography-mass spectrometry. J Agric Food Chem. 2004;52(19):5873-8. https://doi.org/10.1021/jf049950k PMid:15366835 DOI: https://doi.org/10.1021/jf049950k

Hernandez CL, Villasenor IM, Joseph E, Tolliday N. Isolation and evaluation of antimitotic activity of phenolic compounds from Pouteria campechiana Baehni. Philippine J Sci. 2008;137(1):1-10.

Pourmurad F, Hosseinimehr SJ, Shahabimajd N. Antioxidant activity, phenol and flavonoid contents of some selected Iranian medicinal plants. Afr J Biotechnol. 2006;5(11):1142-5.

Chang CC, Yang MH, Wen HM, Chem JC. Estimation of total flavonoid content in propolis by two complementary colorimetric methods. J Food Drug Anal. 2002;10(3):178-82. https://doi.org/10.38212/2224-6614.2748 DOI: https://doi.org/10.38212/2224-6614.2748

Masuda T, Yamashita D, Takeda Y, Yonemori S. Screening for tyrosinase inhibitors among extract of seashore plants and identification of potent inihibitors from Garcinia subelliptica. Biosci Biotechnol Biochem. 2005;69(1):197-201. https://doi.org/10.1271/bbb.69.197 PMid:15665485 DOI: https://doi.org/10.1271/bbb.69.197

Blois MS. Antioxidant determinations by the use of a stable free radical. Nature 1958;181:1199-200. DOI: https://doi.org/10.1038/1811199a0

Scherer R, Godoy HT. Antioxidant activity index (AAI) by the 2,2-diphenil-1-picrylhydrazyl method. Food Chem. 2009;112:654-8. https://doi.org/10.1016/j.foodchem.2008.06.026 DOI: https://doi.org/10.1016/j.foodchem.2008.06.026

Tanase C, Cosarca S, Muntean DL. A critical review of phenolic compounds extracted from the bark of woody vascular plants and their potential biology activity. Molecules. 2019;24(1182):1182. https://doi.org/10.3390/molecules24061182 PMid:30917556 DOI: https://doi.org/10.3390/molecules24061182

Treml J, and Smejkal K. Flavonoids as potent scavengers of hydroxyl radicals. Compr Rev Food Sci Food Saf. 2016;15(1):720-38. https://doi.org/10.1111/1541-4337.12204 DOI: https://doi.org/10.1111/1541-4337.12204

Chen CY, Lin LC, Yang WF, Bordon J, Wang HMD. An update organic classification of tyrosinase. Curr Org Chem. 2015;19(1):4-18. https://doi.org/10.2174/1385272819666141107224800036 DOI: https://doi.org/10.2174/1385272819666141107224806

Kim YJ, Uyama H. Review: Tyrosinase inhibitors from natural and synthetic sources: Structure, inhibition mechanism and perspective. Cell Mol Life Sci. 2005;62(15):1707-23. https://doi.org/10.1007/s00018-005-5054-y PMid:15968468 DOI: https://doi.org/10.1007/s00018-005-5054-y

Rao GV, Sahoo MR, Madhavi MS, Mukhopadhay T. Phytoconstituents from the leaves and seeds of Manilkara zapota Linn. Pharm Lett. 2014;6(2):69-73.

Baky MH, Kamal AK, Elgindi MR, Haggag EG. A review on phenolic compounds from family sapotaceae. J Pharmacogn Phytochem. 2016;5(2):280-7.

Hardiyanti R, Marpaung L, Andyana IK, Simanjuntak P. Isolation of quercitrin from Dendrophthoe pentandra (L.) and it’s antioxidant and antibacterial activities. Rasayan J Chem. 2019;12(4):1822-7. https://doi.org/10.31788/RJC.2019.1235353 DOI: https://doi.org/10.31788/RJC.2019.1235353

Yin Y, Li W, Son Y, Sun L, Lu J, Kim D, et al. Quercitrin protects skin from UVB-induced oxidative damage. Toxicol Appl Pharmacol. 2013;269(2):88-99. https://doi.org/10.1016/j.taap.2013.03.015 PMid:23545178 DOI: https://doi.org/10.1016/j.taap.2013.03.015




How to Cite

Fitriansyah SN, Hartati R, Fidrianny I. Effect of Different Solvent on Phytochemical Content, Tyrosinase Inhibition and Antioxidant Activities of Campolay (Pouteria campechiana kunth. [Baehni.]). Open Access Maced J Med Sci [Internet]. 2022 Jan. 18 [cited 2024 Mar. 5];10(A):158-63. Available from: https://oamjms.eu/index.php/mjms/article/view/8204