Evaluation of Peronema canescens Leaves Extract: Fourier Transform Infrared Analysis, Total Phenolic and Flavonoid Content, Antioxidant Capacity, and Radical Scavenger Activity
DOI:
https://doi.org/10.3889/oamjms.2022.8221Keywords:
Peronema canescens leaves, FTIR analysis, Total phenolic content, Total flavonoid content, Antioxidant activity, DPPH MethodAbstract
BACKGROUND: Peronema canescens (Sungkai) leaves have been popular in Indonesia which contain various bioactive compounds with empirical therapeutic efficacy in dealing with COVID-19 and various other diseases. Total phenolic and flavonoid content and antioxidant activity using the DPPH method from P. canescens leaf extract have not been studied much.
AIM: This research has several objectives. The first is to compare the results of qualitative phytochemical analysis of the ethanol extract of the leaves of P. canescens (EEPL). The second is to measure the total phenol and flavonoid content. The third is to test the FTIR and antioxidant activity of the ethanol extract of P. canescens leaves in vitro using the DPPH method.
METHODS: Fresh plant material and simplicia, ethanol extract extracted by maceration method using 96% ethanol as solvent from P. canescens. The Dragendorff’s and Mayer test carried out the qualitative phytochemical analysis, FeCl3 test, Salkowski method, Liebermann–Burchard method, foam test, and NaOH reagent. The total phenolic and flavonoid levels were tested using the Folin–Ciocalteu method. In vitro antioxidant activity was carried out using the DPPH (1,1-diphenyl-2-picrylhydrazyl) method.
RESULTS: The results of qualitative phytochemical screening showed that alkaloids, flavonoids, saponins, tannins, and steroids were detected in the extract of P. canescens. The spectra from the FTIR test results showed various absorbance peak values indicating the bonding of specific functional groups, namely: 418.12, 599.94, 666.67, 1036.39, 1159.52, 1224.16, 1348.95, 1454.19, 1600.87, 1732.00, 2923.13, and 3353.01 cm-1. In the test results, total phenolic content was as much as 5.64% (mgEAG/g) and total flavonoid content of 142,247 mgEQ/g in a sample of 1 mg extract, which was equivalent to 1 mg quercetin. EEPL has antioxidant activity with the DPPH IC50 method of 116.7865 ppm.
CONCLUSION: The data obtained at this time can contribute to the exploitation of P. canescens leaves in the future as one of the nutraceutical products, supplements, and herbal medicines by specific industries related to improving the health status of the world community. The higher the bioactive substance in preparation, the more significant the effect of the pharmacological efficacy response. P. canescens ethanol extract has good total phenolic content, total flavonoid content, and antioxidant action.Downloads
Metrics
Plum Analytics Artifact Widget Block
References
Nurcholis W, Sya’bani Putri DN, Husnawati H, Aisyah SI, Priosoeryanto BP. Total flavonoid content and antioxidant activity of ethanol and ethyl acetate extracts from accessions of amomum compactum fruits. Ann Agric Sci. 2021;66(1):58-62. https://doi.org/10.1016/j.aoas.2021.04.001 DOI: https://doi.org/10.1016/j.aoas.2021.04.001
Khalifa HA, Shalaby SI, Abdelaziz AS. Alhagi maurorum aqueous extract protects against norfloxacin-induced hepato-nephrotoxicity in rats. Chinese Herb Med. 2020;12:156-62. https://doi.org/10.1016/j.chmed.2019.09.007 DOI: https://doi.org/10.1016/j.chmed.2019.09.007
Erkekoglou I, Nenadis N, Samara E, Mantzouridou FT. Functional teas from the leaves of arbutus unedo: Phenolic content, antioxidant activity, and detection of efficient radical scavengers. Plant Foods Hum Nutr. 2017;72:176-83. https://doi.org/10.1007/s11130-017-0607-4 PMid:28421300 DOI: https://doi.org/10.1007/s11130-017-0607-4
Putranto AM, Yani AP. Examination of the Sungkai’s young leaf extract (Peronema canescens) as an antipyretic, immunity, antiplasmodium and teratogenity in mice (Mus musculus). Int J Sci Eng. 2014;7:30-4. https://doi.org/10.12777/ijse.7.1.30-34 DOI: https://doi.org/10.12777/ijse.7.1.30-34
Yani AP, Yenita Y, Ansori I, Irwanto R. The Potential Test of Sungkai Young Leaves (Peronema canescens) to Maintain Goodhelth (Immunity) in Mice (Mus musculus). Seminar Nasional XI Pendidikan Biologi FKIP UNS; 2013. p. 245-50.
Ramadenti F, Sundaryono A, Handayani, D. Test of ethyl acetate fraction of Peronema canescens Leaves against Plasmodium berghei in Mus musculus. Allotrope J Educ Chem. 2017;1:89-92.
Ibrahim A, Kuncoro H. Identification of secondary metabolites and antibacterial activity of sungkai leaf extract (Peronema canescens Jack.) against several pathogenic bacteria. J Trop Pharm Chem. 2012;2:8-18. https://doi.org/10.25026/jtpc.v2i1.43 DOI: https://doi.org/10.25026/jtpc.v2i1.43
Hazimah, Teruna HY, Jose C. Antioxidant and antimicrobial activity of Plectranthus amboinicus extract. J Farm Indones Res. 2013;1:39-42.
Batool S, Saeed H, Yehya S, Ali R, Mofreh A, Saeed H. Evaluation of antidepressant potential of hydrastis canadensis in Mice. Open Access Maced J Med Sci. 2020;8:589-92. https://doi.org/10.3889/oamjms.2020.4903 DOI: https://doi.org/10.3889/oamjms.2020.4903
Rahimah SB, Djunaedi DD, Soeroto AY, Bisri T. The phytochemical screening, total phenolic contents and antioxidant activities in vitro of white oyster mushroom (Pleurotus ostreatus) preparations. Open Access Maced J Med Sci. 2019;7:2404-12. https://doi.org/10.3889/oamjms.2019.741 PMid:31666837 DOI: https://doi.org/10.3889/oamjms.2019.741
Singh A, Kumar J, Sharma VK, Singh DK, Kumari P, Nishad JH, et al. Phytochemical analysis and antimicrobial activity of an endophytic Fusarium proliferatum (ACQR8), isolated from a folk medicinal plant Cissus quadrangularis L. South Afr J Bot. 2021;140:87-94. https://doi.org/10.1016/j.sajb.2021.03.004. DOI: https://doi.org/10.1016/j.sajb.2021.03.004
Salem MZ, Ali HM, El-Shanhorey NA, Abdel-Megeed A. Evaluation of extracts and essential oil from Callistemon viminalis leaves: Antibacterial and antioxidant activities, total phenolic and flavonoid contents. Asian Pac J Trop Med. 2013;6(10):785-91. https://doi.org/10.1016/S1995-7645(13)60139-X PMid:23870467 DOI: https://doi.org/10.1016/S1995-7645(13)60139-X
Sridhar K, Charles AL. In vitro antioxidant activity of kyoho grape extracts in DPPH* and ABTS* assays: Estimation methods for EC50 using advanced statistical programs. Food Chem. 2019;275:41-9. https://doi.org/10.1016/j.foodchem.2018.09.040 PMid:30724215 DOI: https://doi.org/10.1016/j.foodchem.2018.09.040
Ministry of Health RI. General Standard Parameters of Medicinal Plant Extracts. United States: Ministry of Health RI; 2000.
Siregar ES, Pasaribu N, Sofyan MZ. Antioxidant activity of liverworts Marchantia paleacea bertol. from North Sumatra, Indonesia. IOP Conf Ser Earth Environ Sci 2021;713:1-7. https://doi.org/10.1088/1755-1315/713/1/012061 DOI: https://doi.org/10.1088/1755-1315/713/1/012061
WHO. Quality Control Methods for Herbal Materials. Geneva: WHO; 2011. p. 283.
Kanlayavattanakul M, Pawakongbun T, Lourith N. Dendrobium orchid polysaccharide extract: Preparation, characterization and in vivo skin hydrating efficacy. Chinese Herb Med. 2019;11:400-5. https://doi.org/10.1016/j.chmed.2019.03.012. DOI: https://doi.org/10.1016/j.chmed.2019.03.012
Fadhilla R, Iskandar AP, Kusumaningrum HD. Antibacterial activity of liver moss plant extract (Marchantia paleacea) against pathogenic and food-destroying bacteria. J Technol Food Ind. 2012;23:126-31. https://doi.org/10.6066/jtip.2012.23.2.126 DOI: https://doi.org/10.6066/jtip.2012.23.2.126
Do QD, Angkawijaya AE, Tran-Nguyen PL, Huynh LH, Soetaredjo FE, Ismadji S, Ju Y. Effect of extraction solvent on total phenol content, total flavonoid content, and antioxidant activity of Limnophila aromatica. J Food Drug Anal. 2014;22(3):296-302. https://doi.org/10.1016/j.jfda.2013.11.001 PMid:28911418 DOI: https://doi.org/10.1016/j.jfda.2013.11.001
Vongsak B, Sithisarn P, Mangmool S, Thongpraditchote S, Wongkrajang Y, Gritsanapan W. Maximizing total phenolics, total flavonoids contents and antioxidant activity of moringa oleifera leaf extract by the appropriate extraction method. Ind Crops Prod. 2013;44:566-71. https://doi.org/10.1016/j.indcrop.2012.09.021 DOI: https://doi.org/10.1016/j.indcrop.2012.09.021
Yudha SS, Falahudin A, Wibowo RH, Hendri J, Wicaksono DO. Reduction of 4-nitrophenol mediated by silver nanoparticles synthesized using aqueous leaf extract of Peronema canescens. Bull Chem React Eng Catal. 2021;16:253-9. https://doi.org/10.9767/bcrec.16.2.10426.253-259 DOI: https://doi.org/10.9767/bcrec.16.2.10426.253-259
Tohidi B, Rahimmalek M, Arzani A. Essential oil composition, total phenolic, flavonoid contents, and antioxidant activity of thymus species collected from different regions of Iran. Food Chem. 2017;220:153-61. https://doi.org/10.1016/j.foodchem.2016.09.203 PMid:27855883 DOI: https://doi.org/10.1016/j.foodchem.2016.09.203
Farasat M. Antioxidant activity, total phenolics and flavonoid contents of some edible green seaweeds from Northern Coasts of the Persian Gulf. Iran J Pharm Res. 2014;13(1):163-70. PMid:24734068 DOI: https://doi.org/10.5812/jjnpp.7736
Altemimi A, Lakhssassi N, Baharlouei A, Watson DG, Lightfoot DA. Phytochemicals: Extraction, isolation, and identification of bioactive compounds from plant extracts. Plants (Basel). 2017;6(4):42. https://doi.org/10.3390/plants6040042 PMid:28937585 DOI: https://doi.org/10.3390/plants6040042
Andespal H, Sundaryono A, Amir H. Phytochemical Profile of Sungkai Leaves (Peronema canescens) and Antioxidant Activity Test and Cytotoxic Test Against Artemia salina Leach, Undergraduated Thesis. Indonesia: Universitas Bengkulu; 2020.
Joshi DD. Herbal Drugs and Fingerprints: Evidence-Based Herbal Drugs. Berlin, Germany: Springer; 2012. p. 121-46. https://doi.org/10.1007/978-81-322-0804-4 DOI: https://doi.org/10.1007/978-81-322-0804-4_7
Khare B, Mishra MK, Kesharwani L. Screening of adulterants in slimming herbal formulation by FTIR analysis. Eur J Med Plants. 2019;30(2):1-8. https://doi.org/10.9734/ejmp/2019/v30i230174 DOI: https://doi.org/10.9734/ejmp/2019/v30i230174
Silva S, Feliciano RP, Boas LV, Bronze MR. Application of FTIR-ATR to moscatel dessert wines for prediction of total phenolic and flavonoid contents and antioxidant capacity. Food Chem. 2014;150:489-93. https://doi.org/10.1016/j.foodchem.2013.11.028 PMid:24360480 DOI: https://doi.org/10.1016/j.foodchem.2013.11.028
Aryal S, Baniya MK, Danekhu K, Kunwar P, Gurung R, Koirala, N. Total phenolic content, flavonoid content and antioxidant potential of wild vegetables from Western Nepal. Plants (Basel). 2019;8(4):96. https://doi.org/10.3390/plants8040096 PMid:30978964 DOI: https://doi.org/10.3390/plants8040096
Saeed N, Khan MR, Shabbir, M. Antioxidant activity, total phenolic and total flavonoid contents of whole plant extracts Torilis leptophylla L. BMC Complement Altern Med. 2012;12:221. https://doi.org/10.1186/1472-6882-12-221 PMid:23153304 DOI: https://doi.org/10.1186/1472-6882-12-221
Hossain MA, AL-Raqmi KA, AL-Mijizy ZH, Weli AM, Al-Riyami Q. Study of total phenol, flavonoids contents and phytochemical screening of various leaves crude extracts of locally grown Thymus vulgaris. Asian Pac J Trop Biomed. 2013;3(9):705-10. https://doi.org/10.1016/S2221-1691(13)60142-2 PMid:23998010 DOI: https://doi.org/10.1016/S2221-1691(13)60142-2
Zhang YJ, Gan RY, Li S, Zhou Y, Li AN, Xu DP, et al. Antioxidant phytochemicals for the prevention and treatment of chronic diseases. Molecules. 2015;20(12):21138-56. https://doi.org/10.3390/molecules201219753 PMid:26633317 DOI: https://doi.org/10.3390/molecules201219753
Da-Costa-Rocha I, Bonnlaender B, Sievers H, Pischel I, Heinrich M. Hibiscus sabdariffa L.-A phytochemical and pharmacological review. Food Chem. 2014;165:424-43. https://doi.org/10.1016/j.foodchem.2014.05.002 PMid:25038696 DOI: https://doi.org/10.1016/j.foodchem.2014.05.002
Offermanns S, Rosenthal W. Encyclopedia of Molecular Pharmacology. 2nd ed. Berlin, Germany: Springer; 2008. DOI: https://doi.org/10.1007/978-3-540-38918-7
López-Munguía A, Hernández-Romero Y, Pedraza-Chaverri J, Miranda-Molina A, Regla I, Martínez A, Castillo E. phenylpropanoid glycoside analogues: Enzymatic synthesis, antioxidant activity and theoretical study of their free radical scavenger mechanism. PLoS One. 2011;6(6):e20115. https://doi.org/10.1371/journal.pone.0020115 PMid:21674039 DOI: https://doi.org/10.1371/journal.pone.0020115
Downloads
Published
How to Cite
License
Copyright (c) 2022 Tonny Maigoda, Judiono Judiono, Dicki Bakhtiar Purkon, Ayu Nala El Muna Haerussana, Gurid Pramintarto Eko Mulyo (Author)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
http://creativecommons.org/licenses/by-nc/4.0