Urinary Phthalate Levels in Relation to Obesity among a Sample of Egyptian Children
DOI:
https://doi.org/10.3889/oamjms.2022.8259Keywords:
Phthalates, Children, Obesity, Cholesterol, Triglycerides, AnthropometryAbstract
BACKGROUND: Childhood obesity is considered a risk factor for chronic diseases later in life. Phthalates (phthalate acid esters), predominant constituents of plasticizers, are well-thought-out global environmental contaminants.
AIM: This study aims to investigate the relationship between obesity and urinary phthalates in Egyptian children.
MATERIALS AND METHODS: This cross-sectional study included 210 children; 71 children were obese. Age ranged between 8.8 and 16 years with a mean of 12.93 ± 1.29 years. Sociodemographic data were collected. Clinical examination included measuring body weight, height, waist and hip circumferences (WC and HC), and calculation of body mass index (BMI). The lipid profile was analyzed. Urine samples were tested for phthalates levels using high-performance liquid chromatography.
RESULTS: Urinary phthalates metabolites mono benzyl (MBzP), monobutyl (MBP), monoethyl (MEP), and mono (2ethylhexyl) phthalate (MEHP) were detected in all urinary samples with varying levels. The median concentrations of MBzP, MEHP, MBP, and MEP were 1.4, 54.5, 29.9, and 490 (ng/ml), respectively. In obese children, urinary MBP, MEP, and MEHP demonstrated significantly higher mean levels than in non-obese children. Physical indicators of obesity as body weight, BMI, WC, and HC were significantly positively correlated with urinary levels of MEHP and MEP, while urinary MBzP demonstrated a significant positive association with serum triglycerides levels.
CONCLUSION: The present study suggests an association between phthalates exposure and childhood and adolescent adiposity.Downloads
Metrics
Plum Analytics Artifact Widget Block
References
Holtrup B, Church CD, Berry R, Colman L, Jeffery E, Bober J, et al. Puberty is an important developmental period for the establishment of adipose tissue mass and metabolic homeostasis. Adipocytes. 2017;6:224-33. https://doi.org/10.1080/21623945.2017.1349042 PMid:28792785 DOI: https://doi.org/10.1080/21623945.2017.1349042
NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in body mass index, underweight, overweight, and obesity from 1975 to 2016: A pooled analysis of 2416 population-based measurement studies in 128.9million children, adolescents, and adults. Lancet. 2017;390:2627-42. https://doi.org/10.1016/S0140-6736(17)32129-3 PMid:29029897 DOI: https://doi.org/10.1016/S0140-6736(17)32129-3
Commission on Ending Childhood Obesity. Report of the Commission on Ending Childhood Obesity; 2016. Available from: http://www.who.int/end-childhood-obesity/en [Last accessed on 2017 Feb 21].
Reinehr T. Long-term effects of adolescent obesity: Time to act. Nat Rev Endocrinol. 2018;14(3):183-8. https://doi.org/10.1038/nrendo.2017.147 PMid:29170543 DOI: https://doi.org/10.1038/nrendo.2017.147
Williams EP, Mesidor M, Winters K, Dubbert PM, Wyatt SB. Overweight and obesity: Prevalence, consequences, and causes of a growing public health problem. Curr Obesity Rep. 2015;4(3):363-70. https://doi.org/10.1007/s13679-015-0169-4 PMid:26627494 DOI: https://doi.org/10.1007/s13679-015-0169-4
Heindel JJ, Blumberg B, Cave M, Machtinger R, Mantovani A, Mendez MA, et al. Metabolism disrupting chemicals and metabolic disorders. Reprod Toxicol. 2017;68:3-33. https://doi.org/10.1016/j.reprotox.2016.10.001 DOI: https://doi.org/10.1016/j.reprotox.2016.10.001
Apau J, Sefah W, Adua E. Human contact with phthalates during early life stages leads to weight gain and obesity. Cogent Chem. 2020;6:1815273. https://doi.org/10.1080/23312009.2020.1815273 DOI: https://doi.org/10.1080/23312009.2020.1815273
Choi J, Eom J, Kim J, Lee S, Kim Y. Association between some endocrine disrupting chemicals and childhood obesity in biological samples of young girls: Across-sectional study. Environ Toxicol Pharmacol. 2014;38:51-7. https://doi.org/10.1016/j.etap.2014.04.004 PMid:24908636 DOI: https://doi.org/10.1016/j.etap.2014.04.004
Romano ME, Savitz DA, Braun JM. Challenges and future directions to evaluating the association between prenatal exposure to endocrine disrupting chemicals and childhood obesity. Curr Epidemiol Rep. 2014;1:57-66. https://doi.org/10.1007/s40471-014-0007-3 PMid:25328860 DOI: https://doi.org/10.1007/s40471-014-0007-3
Guo Y, Alomirah H, Cho HS, Minh TB, Mohd MA, Nakata H, et al. Occurrence of phthalate metabolites in human urine from several Asian countries. Environ Sci Technol. 2011;45(7):3138-44. https://doi.org/10.1021/es103879m PMid:21395215 DOI: https://doi.org/10.1021/es103879m
Meeker JD, Sathyanarayana S, Swan SH. Phthalates and other additives in plastics: Human exposure and associated health outcomes. Philos Trans R Soc Lond B Biol Sci. 2009;364:2097-113. https://doi.org/10.1098/rstb.2008.0268 PMid:19528058 DOI: https://doi.org/10.1098/rstb.2008.0268
Kim SH, Park MJ. Phthalate exposure and childhood obesity. Ann Pediatr Endocrinol Metab. 2014;19(2):69-75. https://doi.org/10.6065/apem.2014.19.2.69 PMid:25077088 DOI: https://doi.org/10.6065/apem.2014.19.2.69
Wang Y, Zhu H, Kannan K. A review of biomonitoring of phthalate exposures Toxics. 2019;7(2):21. https://doi.org/10.3390/toxics7020021 PMid:30959800 DOI: https://doi.org/10.3390/toxics7020021
Giuliani A, Zuccarini M, Cichelli A, Khan H, Reale M. Review critical review on the presence of phthalates in food and evidence of their biological impact. Int J Environ Res Public Health. 2020;17(16):5655. https://doi.org/10.3390/ijerph17165655 PMid:32764471 DOI: https://doi.org/10.3390/ijerph17165655
Grün F, Blumberg B. Perturbed nuclear receptor signaling by environmental obesogens as emerging factors in the obesity crisis. Rev Endocr Metab Disord. 2007;8:161-71. https://doi.org/10.1007/s11154-007-9049-x PMid:17657605 DOI: https://doi.org/10.1007/s11154-007-9049-x
Shehata MA, Salah EM, Youssef MM, Abushady MM, El-Alameey IR, Ashaat EA, et al. Comparing levels of urinary phthalate metabolites in Egyptian children with autism spectrum disorders and healthy control children: Referring to Sources of phthalate exposure. Open Access Maced J Med Sci. 2021;9:1640-6. DOI: https://doi.org/10.3889/oamjms.2021.7635
WHO Multicentre Growth Reference Study Group. WHO child growth standards based on length/height, weight and age. Acta Paediatr Suppl. 2006;450:76-85. https://doi.org/10.1111/j.1651-2227.2006.tb02378.x PMid:16817681 DOI: https://doi.org/10.1111/j.1651-2227.2006.tb02378.x
Koch HM, Drexler H, Angerer J. Internal exposure of nursery-school children and their parents and teachers to di (2-ethylhexyl) phthalate (DEHP). Int J Hyg Environ Health. 2004;207(1):15-22. https://doi.org/10.1078/1438-4639-00270 PMid:14762970 DOI: https://doi.org/10.1078/1438-4639-00270
Hauser R, Calafat AM. Phthalates and human health. J Occup Environ Med. 2005;62(11):806-18. DOI: https://doi.org/10.1136/oem.2004.017590
Teitelbaum SL, Mervish N, Moshier EL, Vangeepuram N, Galvez MP, Calafat AM, et al. Associations between phthalate metabolite urinary concentrations and body size measures in New York City children. Environ Res. 2012;112:186-93. https://doi.org/10.1016/j.envres.2011.12.006 PMid:22222007 DOI: https://doi.org/10.1016/j.envres.2011.12.006
Kim Y, Ha EH, Kim EJ, Park H, Ha M, Kim JH, et al. Prenatal exposure to phthalates and infant development at 6 months: Prospective mothers and children’s environmental health (moceh) study. Environ Health Perspect. 2011;119(10):1495-500. https://doi.org/10.1289/ehp.1003178 PMid:21737372 DOI: https://doi.org/10.1289/ehp.1003178
Feng YL, Liao X, Grenier G, Nguyen N, Chan P. Determination of 18 phthalate metabolites in human urine using a liquid chromatography-tandem mass spectrometer equipped with a core-shell column for rapid separation. Anal Methods. 2015;7:8048-59. DOI: https://doi.org/10.1039/C5AY00107B
Tietz NW. Clinical Guide to Laboratory Tests. 3rd ed. Philadelphia, PA: WB Saunders Company; 1995. p. 130-1.
Lopez-Virella MF, Stone P, Ellis S, Colwell JA. Cholesterol determination by three different methods. Clin Chem. 1977;23:882-4. PMid:192488 DOI: https://doi.org/10.1093/clinchem/23.5.882
Hata Y, Nakajima K. Application of Friedewald’s LDL-cholesterol estimation formula to serum lipids in the Japanese population. Jpn Circ J. 1986;50(12):1191-200. https://doi.org/10.1253/jcj.50.1191 PMid:3469420 DOI: https://doi.org/10.1253/jcj.50.1191
Stahlhut RW, van Wijngaarden E, Dye TD, Cook S, Swan SH. Concentrations of urinary phthalate metabolites are associated with increased waist circumference and insulin resistance in adult U.S. Males. Environ Health Perspect. 2007;115:876-82. https://doi.org/10.1289/ehp.9882 PMid:17589594 DOI: https://doi.org/10.1289/ehp.9882
Trasande L, Attina TM, Sathyanarayana S, Spanier AJ, Blustein J. Race/ethnicity-specific associations of urinary phthalates with childhood body mass in a nationally representative sample. Environ Health Perspect. 2013;121:501-6. https://doi.org/10.1289/ehp.1205526 PMid:23428635 DOI: https://doi.org/10.1289/ehp.1205526
Frederiksen H, Skakkebaek NE, Andersson AM. Metabolism of phthalates in humans. Mol Nutr Food Res. 2007;51(7):899-911. https://doi.org/10.1002/mnfr.200600243 PMid:17604388 DOI: https://doi.org/10.1002/mnfr.200600243
Jeddi MZ, Gorji ME, Rietjens IM, Louisse J, de Bruin YB, Liska R. Biomonitoring and subsequent risk assessment of combined exposure to phthalates in Iranian children and adolescents. Int J Environ Res Public Health. 2018;15(11):2336-58. https://doi.org/10.3390/ijerph15112336 PMid:30360526 DOI: https://doi.org/10.3390/ijerph15112336
Bamai YA, Araki A, Kawai T, Tsuboi T, Yoshioka E, Kanazawa A, et al. Comparisons of urinary phthalate metabolites and daily phthalate intakes among Japanese families. Int J Hyg Environ Health. 2015;218(5):461-470. https://doi.org/10.1016/j.ijheh.2015.03.013 PMid:25888094 DOI: https://doi.org/10.1016/j.ijheh.2015.03.013
Amin MM, Ebrahimpour K, Parastar S, Shoshtari-Yeganeh B, Hashemi M, Mansourian M, et al. Association of urinary concentrations of phthalate metabolites with cardiometabolic risk factors and obesity in children and adolescents. Chemosphere. 2018;211:547-56. https://doi.org/10.1016/j.chemosphere.2018.07.172 PMid:30092535 DOI: https://doi.org/10.1016/j.chemosphere.2018.07.172
European Food Safety Authority. Scientific report of EFSA. Overview of the procedures currently used at EFSA for the assessment of dietary exposure to different chemical substances. EFSA J. 2011;9:2490. DOI: https://doi.org/10.2903/j.efsa.2011.2490
Haney EM, Huffman LH, Cea B. Screening for Lipid Disorders in Children and Adolescents. Rockville, MD: Agency for Healthcare Research and Quality (US); 2007.
James-Todd TM, Huang T, Seely EW, Saxena AR. The association between phthalates and metabolic syndrome: The National Health and Nutrition Examination Survey 2001-2010. Environ Health. 2016;15:52. https://doi.org/10.1186/s12940-016-0136-x PMid:27079661 DOI: https://doi.org/10.1186/s12940-016-0136-x
Kim JH, Park H, Lee J, Cho G, Choi S, Choi G, et al. Association of diethylhexyl phthalate with obesity related markers and body mass change from birth to 3 months of age. J Epidemiol Community Health. 2016;70:466-72. https://doi.org/10.1136/jech-2015-206315 PMid:26834143 DOI: https://doi.org/10.1136/jech-2015-206315
Jia X, Harada Y, Tagawa M, Naito H, Hayashi Y, Yetti H, et al. Prenatal maternal blood triglyceride and fatty acid levels in relation to exposure to di(2-ethylhexyl) phthalate: A cross-sectional study. Environ Health Prev Med. 2014;20(3):168-78. DOI: https://doi.org/10.1007/s12199-014-0440-4
Milošević N, Milanović M, Sudji J, Živanović DB, Stojanoski S, Vuković B, et al. Could phthalates exposure contribute to the development of metabolic syndrome and liver disease in humans? Environ Sci Pollut Res. 2020;27(1):772-84. https://doi.org/10.1007/s11356-019-06831-2 PMid:31808097 DOI: https://doi.org/10.1007/s11356-019-06831-2
Perng W, Watkins DJ, Cantoral A, Mercado-García A, Meeker JD, Téllez-Rojo MM, et al. Exposure to phthalates is associated with lipid profile in peripubertal Mexican youth. Environ Res. 2017;154:311-7. https://doi.org/10.1016/j.envres.2017.01.033 PMid:28152472 DOI: https://doi.org/10.1016/j.envres.2017.01.033
Hurst CH, Waxman DJ. Activation of PPARα and PPARγ by environmental phthalate monoesters. Toxicol Sci. 2003;74:297-308. https://doi.org/10.1093/toxsci/kfg145 PMid:12805656 DOI: https://doi.org/10.1093/toxsci/kfg145
Wang H, Zhou Y, Tang C, He Y, Wu J, Chen Y, et al. Urinary phthalate metabolites are associated with body mass index and waist circumference in Chinese school children. PLoS One. 2013;8(2):56800. https://doi.org/10.1371/journal.pone.0056800 PMid:23437242 DOI: https://doi.org/10.1371/journal.pone.0056800
Harley KG, Berger K, Rauch S, Kogut K, Henn BC, Calafat AM, et al. Association of prenatal urinary phthalate metabolite concentrations and childhood BMI and obesity. Pediatr Res. 2017;82(3):405-15. https://doi.org/10.1038/pr.2017.112 PMid:28426647 DOI: https://doi.org/10.1038/pr.2017.112
Shoaff J, Papandonatos GD, Calafat AM, Ye X, Chen A, Lanphear BP, et al. Early-life phthalate exposure and adiposity at 8 years of age. Environ Health Perspect. 2017;125(9):097008. https://doi.org/10.1289/EHP1022 PMid:28935615 DOI: https://doi.org/10.1289/EHP1022
Vafeiadi M, Myridakis A, Roumeliotaki T, Margetaki K, Chalkiadaki G, Dermitzaki E, et al. Association of early life exposure to phthalates with obesity and cardiometabolic traits in childhood: Sex specific associations. Front Public Health. 2018;6:327. https://doi.org/10.3389/fpubh.2018.00327 PMid:30538977 DOI: https://doi.org/10.3389/fpubh.2018.00327
Yang TC, Peterson KE, Meeker JD, Sánchez BN, Zhang Z, Cantoral A, et al. Exposure to Bisphenol A and phthalates metabolites in the third trimester of pregnancy and BMI trajectories. Pediat Obes. 2018;13:550-7. https://doi.org/10.1111/ijpo.12279 PMid:29700996 DOI: https://doi.org/10.1111/ijpo.12279
Khalil N, Chen A, Lee M. Endocrine disruptive compounds and cardio-metabolic risk factors in children. Curr Opin Pharmacol. 2014;19:120-4. https://doi.org/10.1016/j.coph.2014.09.015 PMid:25306432 DOI: https://doi.org/10.1016/j.coph.2014.09.015
Aguilar-Morales I, Colin-Ramirez E, Rivera-Mancía S, Vallejo M, Vázquez-Antona C. Performance of waist-to-height ratio, waist circumference, and body mass index in discriminating cardio-metabolic risk factors in a sample of school-aged Mexican Children. Nutrients. 2018;10(12):1850. https://doi.org/10.3390/nu10121850 PMid:30513720 DOI: https://doi.org/10.3390/nu10121850
Gaston SA, Tulve NS. Urinary phthalate metabolites and metabolic syndrome in U.S. adolescents: Cross-sectional results from the national health and nutrition examination survey (2003- 2014) data. Int J Hyg Environ Health. 2019;222(2):195-204. https://doi.org/10.1016/j.ijheh.2018.09.005 PMid:30297147 DOI: https://doi.org/10.1016/j.ijheh.2018.09.005
Stojanoska MM, Milankov A, Vukovic B, Vukcevic D, Sudji J, Bajkin I, et al. Do diethyl phthalate (DEP) and di-2-ethylhexyl phthalate (DEHP) influence the metabolic syndrome parameters? Pilot study. Environ Monit Assess. 2015;187(8):526. https://doi.org/10.1007/s10661-015-4754-5 PMid:26210228 DOI: https://doi.org/10.1007/s10661-015-4754-5
Taxvig C, Dreisig K, Boberg J, Nellemann C, Schelde AB, Pedersen D, et al. Differential effects of environmental chemicals and food contaminants on adipogenesis, biomarker release and PPAR gamma activation. Mol Cell Endocrinol. 2012;361(1-2):106-15. https://doi.org/10.1016/j.mce.2012.03.021 PMid:22526026 DOI: https://doi.org/10.1016/j.mce.2012.03.021
Dirtu AC, Geens T, Dirinck E, Malarvannan G, Neels H, Van Gaal L, et al. Phthalate metabolites in obese individuals undergoing weight loss: Urinary levels and estimation of the phthalates daily intake. Environ Int. 2013;59:344-53. https://doi.org/10.1016/j.envint.2013.06.023 DOI: https://doi.org/10.1016/j.envint.2013.06.023
Boas M, Frederiksen H, Feldt-Rasmussen U, Skakkebaek NE, Hegedus L, Hilsted L, et al. Childhood exposure to phthalates: Associations with thyroid function, insulin-like growth factor I, and growth. Environ Health Perspect. 2010;118:1458-64. https://doi.org/10.1289/ehp.0901331 PMid:20621847 DOI: https://doi.org/10.1289/ehp.0901331
Buckley JP, Engel SM, Mendez MA, Richardson DB, Daniels JL, Calafat AM, et al. Prenatal phthalate exposures and childhood fat mass in a New York City cohort. Environ Health Perspect. 2016;124:507-13. https://doi.org/10.1289/ehp.1509788 PMid:26308089 DOI: https://doi.org/10.1289/ehp.1509788
Carlsson A, Sørensen K, Andersson AM, Frederiksen H, Juul A. Bisphenol A. Phthalate metabolites and glucose homeostasis in healthy normal-weight children. Endocr Connect. 2018;7(1):232-8. https://doi.org/10.1530/EC-17-0344 PMid:29237763 DOI: https://doi.org/10.1530/EC-17-0344
Downloads
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2022 Manal A. Mohsen, Mai M. Youssef, Ebtissam M. Salah El-Din, Samar M. E. Salem, Hala Mohamed Salah El Din Megahed, Mones M. AbuShady, Dalia Medhat, Amr S. Gouda, Walaa Nazim, Manal A. Shehata (Author)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
http://creativecommons.org/licenses/by-nc/4.0
Funding data
-
National Research Centre
Grant numbers 11010147