Histological Evaluation of Guided Bone Regeneration in Osseous Defects Using A Novel Non-Resorbable Membrane

Authors

  • Mohamed Abdelhamid Ahmed Ali Department of Oral Surgery and Maxillofacial, Faculty of Dentistry, Alexandria University, Alexandria, Egypt https://orcid.org/0000-0001-7756-702X
  • Diana Mostafa Department of Periodontology and Oral Medicine, Faculty of Dentistry, Alexandria University, Alexandria, Egypt https://orcid.org/0000-0001-5653-1124

DOI:

https://doi.org/10.3889/oamjms.2022.8262

Keywords:

Guided bone regeneration, Non-resorbable barrier, Propylene membrane, Guided tissue regeneration

Abstract

BACKGROUND: Guided bone regeneration and guided tissue regeneration procedures have been performed using barrier membranes in clinical dentistry to enhance bone formation in osseous defects, ridge preservation and reconstruction. Despite the considerable number of new biomaterials that develop with more advantages and fewer disadvantages for bone regeneration, the cost and surgical approach difficulties are still the main obstacles that we tried to overcome using the novel membrane.

AIM: Our research aimed to assess histologically the bone formation using the novel membrane in experimental bone defects.

MATERIAL AND METHODS: Our study was conducted on ten mongrel dogs. Each animal presented two groups. The first group was at the left side of the animal mandible which received Bio-Oss only while the right side received Bio-Oss and was covered by the novel non-resorbable membrane. These dogs were sacrificed (3, 6, 9 and 12 weeks) postoperatively for histological assessment of healing and bone formation of osseous defects.

RESULTS: The histological evaluation showed that the formation of new bone in group I (Bio-OSS only) was less in amount as compared with group II (Bio-Oss with the novel non-resorbable membrane).

CONCLUSION: The present clinical findings revealed that the novel non-resorbable membrane was inert and induced no inflammatory reaction or graft rejection. The study provided histological evidence of new bone formation in close contact with host bone due to osteoconductivity of Bio-Oss and cell occlussiveness of the membrane.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

Nyman S, Lindhe J, Karring T, Rylander H. New attachment following surgical treatment of human periodontal disease. J Clin Periodontol. 1982;9(4):290-6. https://doi.org/10.1111/j.1600-051x.1982.tb02095.x PMid:6964676 DOI: https://doi.org/10.1111/j.1600-051X.1982.tb02095.x

Dahlin C, Sennerby L, Lekholm U, Linde A, Nyman S. Generation of new bone around titanium implants using a membrane technique: An experimental study in rabbits. Int J Oral Maxillofac Implants. 1989;4(1):19-25. PMid:2599578

Buser D, Dula K, Belser U, Hirt HP, Berthold H. Localized ridge augmentation using guided bone regeneration. 1. Surgical procedure in the maxilla. Int J Periodont Rest Dent. 1993;13(1):29-45. PMid:8330945

Brownfield LA, Weltman RL. Ridge preservation with or without an osteoinductive allograft: A clinical radiographic micro-computed tomography, and histologic study evaluating dimensional changes and new bone formation of the alveolar ridge. J Periodontol. 2012;83(5):581-9. https://doi.org/10.1902/jop.2011.110365 PMid:21942791 DOI: https://doi.org/10.1902/jop.2011.110365

El Askary AE. Fundamentals of esthetic implant dentistry. In: Immediate Esthetic Implant Therapy. 2nd ed., Ch. 6. Munksgaard: Wiley-Blackwell Publishing; 2007. p. 179-207. DOI: https://doi.org/10.1002/9780470376423

Donos N, Kostopoulos L, Karring T. Augmentation of the rat jaw with autogeneic cortico-cancellous bone grafts and guided tissue regeneration. Clin Oral Implants Res 2002;13(2):192-202. https://doi.org/10.1034/j.1600-0501.2002.130210.x PMid:11952740 DOI: https://doi.org/10.1034/j.1600-0501.2002.130210.x

Aurer A, JorgiÊ-Srdjak K. Membranes for periodontal regeneration. Acta Stomat Croat. 2005;39:107-12.

Florjanski W, Orzeszek S, Olchowy A, Grychowska N, Wieckiewicz W, Malysa A, et al. Modifications of polymeric membranes used in guided tissue and bone regeneration. Polymers. 2019;11(5):782. https://doi.org/10.3390/polym11050782 PMid:31052482 DOI: https://doi.org/10.3390/polym11050782

Sandherg E, Dahlin C, Linate A. Bone regeneration by the osteopromotive technique using bioabsorbable membranes. An experimental study in rats. Int J Oral Maxillofac Surg. 1993;51(10):1106. https://doi.org/10.1016/s0278-2391(10)80450-1 PMid:8410448 DOI: https://doi.org/10.1016/S0278-2391(10)80450-1

Liu J, Kerns DG. Mechanisms of guided bone regeneration: A review. Open Dent J. 2014;8:56-65. https://doi.org/10.2174/1874210601408010056 PMid:24894890 DOI: https://doi.org/10.2174/1874210601408010056

Taskonak B, Ozkan Y. An alveolar bone augmentation technique to improve esthetics in anterior ceramic FPDs: A clinical report. J Prosthodont. 2006;15(1):32-6. https://doi.org/10.1111/j.1532-849X.2006.00066.x PMid:16433649 DOI: https://doi.org/10.1111/j.1532-849X.2006.00066.x

Barone A, Aldini N, Fini M, Giardino M, Calvo-Guirado L, Covani U. Xenograft versus extraction alone for ridge preservation after tooth removal: A clinical and histomorphometric study. J Periodontol. 2008;79(8):1370-7. https://doi.org/10.1902/jop.2008.070628 PMid:18672985 DOI: https://doi.org/10.1902/jop.2008.070628

De Lucca L, da Costa Marques M, Weinfeld I. Guided bone regeneration with polypropylene barrier in rabbit’s calvaria: A preliminary experimental study. Heliyon. 2018;4(6):e00651. https://doi.org/10.1016/j.heliyon.2018.e00651 PMid:30003155 DOI: https://doi.org/10.1016/j.heliyon.2018.e00651

De Oliveira EL, Carvalho PS, Silva TB. Histological and histomorphometric evaluation of efficacy of a polypropylene barrier in guided bone regeneration and modified guided bone regeneration in critical defects in rodent cranial vaults. J Indian Soc Periodontol. 2019;23(4):351-5. https://doi.org/10.4103/jisp.jisp_111_18 PMid:31367133 DOI: https://doi.org/10.4103/jisp.jisp_111_18

Carvalho, RS, Nelson D, Kelderman H, Wise R. Guided bone regeneration to repair an osseous defect. AJODO. 2003;123(4):455-67. https://doi.org/10.1067/mod.2003.59 PMid:12695774 DOI: https://doi.org/10.1067/mod.2003.59

Simion M, Dahlin C, Rocchietta I, Stavropulos A, Sanchez R, Karring T. Vertical ridge augmentation with guided bone regeneration in association with dental implants: An experimental study in dogs. Clin Oral Impl Res. 2007;18(1):86-94. https://doi.org/10.1111/j.1600-0501.2006.01291.x PMid:17224028 DOI: https://doi.org/10.1111/j.1600-0501.2006.01291.x

Schwarz F, Herten M, Ferrari D, Wieland M, Schmitz L, Engelhardt E, et al. Guided bone regeneration at dehiscence-type defects using biphasic hydroxyapatite + beta tricalcium phosphate (Bone Ceramic) or a collagen-coated natural bone mineral (BioOss Collagen): An immunohistochemical study in dogs. Int J Oral Maxillofac Surg. 2007;36(12):1198-206. https://doi.org/10.1016/j.ijom.2007.07.014 PMid:17826958 DOI: https://doi.org/10.1016/j.ijom.2007.07.014

AlGhamdi AS, Ciancio SG. Guided tissue regeneration membranes for periodontal regeneration-a literature review. J Int Acad Periodont. 2009;11(3):226-31. PMid:19753801

Simion M, Fontana F, Raperini G, Maiorana C. Vertical ridge augmentation by expanded-polytetrafluoroethylene membrane and a combination of intraoral autogenous graft and deproteinized anorganic bovine bone (Bio Oss). Clin Oral Impl Res. 2007;18(5):620-9. https://doi.org/10.1111/j.1600-0501.2007.01389.x PMid:17877463 DOI: https://doi.org/10.1111/j.1600-0501.2007.01389.x

Schwarz F, Rothamel D, Herten M, Sager M, Ferrari D, Becker J. Immunohistochemical characterization of guided bone regeneration at dehiscence-type defect using different barrier membranes: An experimental study in dogs. Clin Oral Impl Res. 2008;19(4):402-15. https://doi.org/10.1111/j.1600-0501.2007.01486.x PMid:18324961 DOI: https://doi.org/10.1111/j.1600-0501.2007.01486.x

Schallhorn RG, Mclain PK. Combined osseous composite grafting, root conditioning, and guided tissue regeneration. Int J Periodont Rest Dent. 1988;8(4):8-31. PMid:3075201

Anderegg CR, Martin SJ, Gray JT, Gher ME. Clinical evaluation of the use of decalcified freeze dried bone allograft with guided tissue regeneration in the treatment of molar furcation invasions. J Periodontal. 1991;62(4):264-8. https://doi.org/10.1902/jop.1991.62.4.264 PMid:2037957 DOI: https://doi.org/10.1902/jop.1991.62.4.264

Caffesse R, Nasjlestic CE, Poltzke A, Anderson GB, Morrison E. GTR and bone grafts in the treatment of furcations. J Periodont. 1993;64(11 Suppl):1145-53. https://doi.org/10.1902/jop.1993.64.11s.1145 PMid:8295103 DOI: https://doi.org/10.1902/jop.1993.64.11s.1145

Mallado JR, Salkin LM, Fredman AL, Skin MD. A comparative study of e-PTEF periodontal membranes with and without decalcified freeze-dried bone allografts for the regenerations of interproximal intraosseous defects. J Periodont. 1995;66(9):751-5. https://doi.org/10.1902/jop.1995.66.9.751 PMid:7500239 DOI: https://doi.org/10.1902/jop.1995.66.9.751

Becker W, Lynch SE, Lekhdm U, Becker BE, Caffesse R, Donath K, et al. A comparison of e-PTEF membranes alone or in combination with platelet derived growth factors and insulin like growth factor 1 or demineralized freeze dried bone in promotion bone formation around immediate extraction socket implants. J Periodont. 1992;63(11):929-40. https://doi.org/10.1902/jop.1992.63.11.929 PMid:1453308 DOI: https://doi.org/10.1902/jop.1992.63.11.929

Downloads

Published

2022-01-26

How to Cite

1.
Ahmed Ali MA, Mostafa D. Histological Evaluation of Guided Bone Regeneration in Osseous Defects Using A Novel Non-Resorbable Membrane. Open Access Maced J Med Sci [Internet]. 2022 Jan. 26 [cited 2024 Apr. 24];10(D):83-90. Available from: https://oamjms.eu/index.php/mjms/article/view/8262

Issue

Section

Periodontology and Oral Medicine

Categories