Dayak Onions (Eleutherine americana L Merr) Reduced Mesothelial Cell Detachment After Laparoscopy in Rats
DOI:
https://doi.org/10.3889/oamjms.2022.8297Keywords:
Eleutherine americana, Inflammation, Oxidative stress, Laparoscopy, Mesothelial cellAbstract
Background: Laparoscopy induces changes and detachment of mesothelial structure. Studies on the prevention of mesothelial cell detachment are rarely found. The Dayak tribe uses the Dayak onion (Eleutherine americana L. Merr) as a wound-healing agent due to its anti-inflammatory and antioxidant activities. This study aimed to prove the anti-inflammatory and antioxidant activities of Dayak onions in preventing mesothelial cell damage after laparoscopy.
Materials and methods: Thirty male Sprague-Dawley rats were classified into five groups (n = 6 per group), namely: (a) control, (b) Mediclore, (c) Dayak onion, 30-, (d) 60-, and (e) 90 mg/kg body weight, respectively. The transforming growth factor-beta (TGF-β) and total oxidant status in the peritoneal fluid were determined 24 hours after laparoscopy. Histopathological analysis of mesothelial cell numbers and the protein Zone Occludin-1 (ZO-1) expression in the peritoneum, small intestines, greater omentum, and liver were performed 7 days after the procedure. An in-silico study was conducted to analyze the anti-inflammatory effects of the components of Dayak onions.
Results: The in-silico study showed that one of the Dayak onion active compounds, eleutherine, had a potential anti-inflammatory effect and acted as a modulator of TGF-β. Following Dayak onion administration, the TGF- level, the number of mesothelial cell detachments, and ZO-1 expression were all significantly reduced (p<0.05), whereas the total oxidant status (TOS) level was not (p>0.05).
Conclusions: Our study showed that Dayak onion administration reduced TGF-β level, number of mesothelial cell detachment, and ZO-1 expression following laparoscopy.
Downloads
Metrics
Plum Analytics Artifact Widget Block
References
Koh DH, Jang WS, Park JW, Ham WS, Han WK, Rha KH, et al. Efficacy and safety of robotic procedures performed using the da Vinci robotic surgical system at a single institute in Korea: Experience with 10000 cases. Yonsei Med J. 2018;59(8):975-81. https://doi.org/10.3349/ymj.2018.59.8.975 PMid:30187705 DOI: https://doi.org/10.3349/ymj.2018.59.8.975
Peters BS, Armijo PR, Krause C, Choudhury SA, Oleynikov D. Review of emerging surgical robotic technology. Surg Endosc. 2018;32(4):1636-55. https://doi.org/10.1007/s00464-018-6079-2 PMid:29442240 DOI: https://doi.org/10.1007/s00464-018-6079-2
Sampurno S, Chittleborough TJ, Carpinteri S, Hiller J, Heriot A, Lynch AC, et al. Modes of carbon dioxide delivery during laparoscopy generate distinct differences in peritoneal damage and hypoxia in a porcine model. Surg Endosc. 2020;34(10):4395-402. https://doi.org/10.1007/s00464-019-07213-y PMid:31624943 DOI: https://doi.org/10.1007/s00464-019-07213-y
Davey AK, Hayward J, Marshall JK, Woods AE. The effects of insufflation conditions on rat mesothelium. Int J Inflam. 2013;2013:816283. https://doi.org/10.1155/2013/816283 PMid:23864985 DOI: https://doi.org/10.1155/2013/816283
Mutsaers SE, Prêle CM, Pengelly S, Herrick SE. Mesothelial cells and peritoneal homeostasis. Fertil Steril. 2016;106(5):1018-24. https://doi.org/10.1016/j.fertnstert.2016.09.005 PMid:27692285 DOI: https://doi.org/10.1016/j.fertnstert.2016.09.005
Kim S, Choi EY, Jo CH, Kim GH. Tight junction protein expression from peritoneal dialysis Effluent. Ren Fail. 2019;41(1):1011-5. https://doi.org/10.1080/0886022X.2019.1686018 PMid:31724477 DOI: https://doi.org/10.1080/0886022X.2019.1686018
Poerwosusanta H, Noor Z, Mintaroem K, Widjajanto E, Ali M. Extraction the Dayak onion (Eleutherine Sp): Scientific based herbal medicine (OHT) production protocol. Berkala Kedokteran. 2019;15(2):133-43. https://doi.org/10.20527/jbk.v15i2.7263 DOI: https://doi.org/10.20527/jbk.v15i2.7263
Kilkenny C, Browne WJ, Cuthill IC, Emerson M, Altman DG. Improving bioscience research reporting: The arrive guidelines for reporting animal research. Animals. 2013;4(1):35-44. https://doi.org/10.1371/journal.pbio.1000412 DOI: https://doi.org/10.3390/ani4010035
Sneddon LU, Halsey LG, Bury NR. Considering aspects of the 3Rs principles within experimental animal biology. J Exp Biol. 2017;220(17):3007-16. https://doi.org/10.1242/jeb.147058 PMid:28855318 DOI: https://doi.org/10.1242/jeb.147058
Poerwosusanta H, Noor GZ, Oktaviyanti IK, Mintaroem K, Pardjianto B, Widodo MA, et al. The effect of laparoscopy on mast cell degranulation and mesothelium thickness in rats. BMC Surg. 2020;20(1):111. https://doi.org/10.1186/s12893-020-00775-y DOI: https://doi.org/10.1186/s12893-020-00775-y
O’Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR. Open babel: An open chemical toolbox. J Cheminform. 2011;3(10):33. https://doi.org/10.1186/1758-2946-3-33 PMid:21982300 DOI: https://doi.org/10.1186/1758-2946-3-33
Arnold K, Bordoli L, Kopp J, Schwede T. The Swiss-model workspace: A web-based environment for protein structure homology modelling. Bioinformatics. 2006;22(2):195-201. https://doi.org/10.1093/bioinformatics/bti770 PMid:16301204 DOI: https://doi.org/10.1093/bioinformatics/bti770
Kiefer F, Arnold K, Künzli M, Bordoli L, Schwede T. The Swiss-model repository and associated resources. Nucleic Acids Res. 2009;37(Suppl 1):387-92. https://doi.org/10.1093/nar/gkn750 PMid:18931379 DOI: https://doi.org/10.1093/nar/gkn750
Setiawan B, Suhartono E, Kaidah S, Akbar IZ, Noor Z. Molecular docking of the active compound Garcinia mangostana on the RANKL/RANK/OPG system. J Phys Conf Ser. 2019;1374(1):012054. https://doi.org/10.1088/1742-6596/1374/1/012054 DOI: https://doi.org/10.1088/1742-6596/1374/1/012054
Macindoe G, Mavridis L, Venkatraman V, Devignes MD, Ritchie DW. HexServer: An FFT-based protein docking server powered by graphics processors. Nucleic Acids Res. 2010;38(Suppl 2):445-9. https://doi.org/10.1093/nar/gkq311 PMid:20444869 DOI: https://doi.org/10.1093/nar/gkq311
Laskowski RA, Swindells MB. LigPlot+: Multiple ligand-protein interaction diagrams for drug discovery. J Chem Inf Model. 2011;51(10):2778-86. https://doi.org/10.1021/ci200227u PMid:21919503 DOI: https://doi.org/10.1021/ci200227u
Wolber G, Langer T. Ligandscout: 3-D pharmacophores derived from protein-bound ligands and their use as virtual screening filters. J Chem Inf Model. 2005;45(1):160-9. https://doi.org/10.1021/ci049885e PMid:15667141 DOI: https://doi.org/10.1021/ci049885e
Ardrey RE. Liquid Chromatography Time-of-Flight Mass Spectrometry. Vol. 1. New York: John Wiley and Sons; 2009. https://doi.org/10.32388/45e2f1 DOI: https://doi.org/10.32388/45E2F1
Federer WT. Randomization and sample size in experimentation. Food Drug Adm Stat Semin. 1966;13:1-14. DOI: https://doi.org/10.1080/00401706.1972.10488879
Van den Bos R, Jolles J, Van der Knaap L, Baars A, De Visser L. Male and female Wistar rats differ in decision-making performance in a rodent version of the Iowa gambling task. Behav Brain Res. 2012;234(2):375-9. https://doi.org/10.1016/j.bbr.2012.07.015 PMid:22814113 DOI: https://doi.org/10.1016/j.bbr.2012.07.015
Avital S, Itah R, Szomstein S, Rosenthal R, Inbar R, Sckornik Y, et al. Correlation of CO2 pneumoperitoneal pressures between rodents and humans. Surg Endosc Other Interv Tech. 2009;23(1):50-4. https://doi.org/10.1007/s00464-008-9862-7 PMid:18389317 DOI: https://doi.org/10.1007/s00464-008-9862-7
Ernawati AN. Antioxidant effects of eleutherine americana merr. (Eleutherine americana merr.) Ethanol extract on the microanatomic structure of the seminiferus tubulus of rats exposed to cigarette smoke. J Ilmiah Berkala Sains dan Terapan Kimia.. 2012;6(2):93100. https://doi.org/10.20527/jstk.v6i2.2109
Villeneuve NF, Lau A, Zhang DD. Regulation of the Nrf2-Keap1 antioxidant response by the ubiquitin proteasome system: An insight into cullin-ring ubiquitin ligases. Antioxid Redox Signal. 2010;13(11):1699-712. https://doi.org/10.1089/ars.2010.3211 PMid:20486766 DOI: https://doi.org/10.1089/ars.2010.3211
Chen L, Deng H, Cui H, Fang J, Zuo Z, Deng J, et al. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget. 2018;9(6):7204-18. https://doi.org/10.18632/oncotarget.23208 PMid:29467962 DOI: https://doi.org/10.18632/oncotarget.23208
Frangogiannis NG. The In fl ammatory Response in Tissue Repair 60. 2 Initiation of the In fl ammatory Response Following Injury: The Alarmins. 2018;1517-37. https://doi.org/10.1002/9783527692156.ch60 DOI: https://doi.org/10.1002/9783527692156.ch60
Liu T, Zhang L, Joo D, Sun SC. NF-κB signaling in inflammation. Signal Transduct Target Ther. 2017;2:17023. https://doi.org/10.1038/sigtrans.2017.23 PMid:29158945 DOI: https://doi.org/10.1038/sigtrans.2017.23
Baysal Z, Togrul T, Aksoy N, Cengiz M, Çelik H, Boleken ME, et al. Evaluation of total oxidative and antioxidative status in pediatric patients undergoing laparoscopic surgery. J Pediatr Surg. 2009;44(7):1367-70. https://doi.org/10.1016/j.jpedsurg.2008.11.031 PMid:19573663 DOI: https://doi.org/10.1016/j.jpedsurg.2008.11.031
Cevrioglu AS, Yilmaz S, Koken T, Tokyol C, Yilmazer M, Fenkci IV. Comparison of the effects of low intra-abdominal pressure and ischaemic preconditioning on the generation of oxidative stress markers and inflammatory cytokines during laparoscopy in rats. Hum Reprod. 2004;19(9):2144-51. https://doi.org/10.1093/humrep/deh380 PMid:15229201 DOI: https://doi.org/10.1093/humrep/deh380
Raffaeli G, Ghirardello S, Passera S, Mosca F, Cavallaro G. Oxidative stress and neonatal respiratory extracorporeal membrane oxygenation. Front Physiol. 2018;9:1739. https://doi.org/10.3389/fphys.2018.01739 PMid:30564143 DOI: https://doi.org/10.3389/fphys.2018.01739
Veekash G, Wei LX, Su M. Carbon dioxide pneumoperitoneum, physiologic changes and anesthetic concerns. Ambul Surg. 2010;16(2):41-6.
Babu GR, Anand T, Ilaiyaraja N, Khanum F, Gopalan N. Pelargonidin modulates Keap1/Nrf2 pathway gene expression and ameliorates citrinin-induced oxidative stress in HepG2 cells. Front Pharmacol. 2017;8:868. https://doi.org/10.3389/fphar.2017.00868 PMid:29230174 DOI: https://doi.org/10.3389/fphar.2017.00868
Sznarkowska A, Kostecka A, Meller K, Bielawski KP. Inhibition of cancer antioxidant defense by natural compounds. Oncotarget. 2017;8(9):15996-6016. https://doi.org/10.18632/oncotarget.13723 PMid:27911871 DOI: https://doi.org/10.18632/oncotarget.13723
Sammour T, Mittal A, Loveday BP, Kahokehr A, Phillips AR, Windsor JA, et al. Systematic review of oxidative stress associated with pneumoperitoneum. Brit J Surg. 2009;96(8):836-50. https://doi.org/10.1002/bjs.6651 PMid:19591166 DOI: https://doi.org/10.1002/bjs.6651
Patel S, Yadav A. Prevention of adhesion in laparoscopic gynaecological surgery. Int J Reprod Contracep Obstet Gynecol. 2016;5(12):4099-105. https://doi.org/10.18203/2320- 1770.ijrcog20164311 DOI: https://doi.org/10.18203/2320-1770.ijrcog20164311
Arung W, Meurisse M, Detry O. Pathophysiology and prevention of postoperative peritoneal adhesions. World J Gastroenterol. 2011;17(41):4545-53. https://doi.org/10.3748/wjg.v17.i41.4545 PMid:22147959 DOI: https://doi.org/10.3748/wjg.v17.i41.4545
Sammour T, Mittal A, Delahunt B, Phillips ARJ, Hill AG. Warming and humidification have no effect on oxidative stress during pneumoperitoneum in rats. Minim Invasive Ther Allied Technol. 2011;20(6):329-37. https://doi.org/10.3109/13645706.2011.556647 PMid:21395459 DOI: https://doi.org/10.3109/13645706.2011.556647
Maciver AH, McCall M, Shapiro AM. Intra-abdominal adhesions: Cellular mechanisms and strategies for prevention. Int J Surg. 2011;9(8):589-94. https://doi.org/10.1016/j.ijsu.2011.08.008 PMid:21964216 DOI: https://doi.org/10.1016/j.ijsu.2011.08.008
Liu RM, Desai LP. Reciprocal regulation of TGF-β and reactive oxygen species: A perverse cycle for fibrosis. Redox Biol. 2015;6:565-77. https://doi.org/10.1016/j.redox.2015.09.009 PMid:26496488 DOI: https://doi.org/10.1016/j.redox.2015.09.009
Mueller C. Danger-associated molecular patterns and inflammatory bowel disease: Is there a connection? Dig Dis. 2013;30(Suppl 3):40-6. https://doi.org/10.1159/000342600 PMid:23295691 DOI: https://doi.org/10.1159/000342600
Baldwin AG, Brough D, Freeman S. Inhibiting the inflammasome: A chemical perspective. J Med Chem. 2016;59(5):1691-710. https://doi.org/10.1021/acs.jmedchem.5b01091 PMid:26422006 DOI: https://doi.org/10.1021/acs.jmedchem.5b01091
Krystel-Whittemore M, Dileepan KN, Wood JG. Mast cell: A multi-functional master cell. Front Immunol. 2016;6:620. https://doi.org/10.3389/fimmu.2015.00620 PMid:26779180 DOI: https://doi.org/10.3389/fimmu.2015.00620
Spoerl D, Nigolian H, Czarnetzki C, Harr T. Reclassifying anaphylaxis to neuromuscular blocking agents based on the presumed Patho-mechanism: IgE-mediated, pharmacological adverse reaction or “Innate hypersensitivity”? Int J Mol Sci. 2017;18(6):1223. https://doi.org/10.3390/ijms18061223 DOI: https://doi.org/10.3390/ijms18061223
Peng Y, Zheng M, Ye Q, Chen X, Yu B, Liu B. Heated and humidified CO2 prevents hypothermia, peritoneal injury, and intra-abdominal adhesions during prolonged laparoscopic insufflations. J Surg Res. 2009;151(1):40-7. https://doi.org/10.1016/j.jss.2008.03.039 PMid:18639246 DOI: https://doi.org/10.1016/j.jss.2008.03.039
Neuhaus SJ, Gupta A, Watson DI. Helium and other alternative insufflation gases for laparoscopy: A review. Surg Endosc. 2001;15(6):553-60. https://doi.org/10.1007/s004640080060 PMid:11591939 DOI: https://doi.org/10.1007/s004640080060
Downloads
Published
How to Cite
License
Copyright (c) 2022 Hery Poerwosusanta, Alfi Yasmina, Firli Rahmah Primula Dewi, Krist Nathania Benita, Angga Setya Budi, Nanda Setya Putri, Nur Ainun, Ghyna Fakhriah, Anisa Fitri, Adam Rahardiyan Poerwosusanta, Elvira Esmeralda Poerwosusanta, Donny Aditia, Zairin Noor (Author)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
http://creativecommons.org/licenses/by-nc/4.0