Antimicrobial Potential of Grape Seed Extract and MTA: A Comparative Experimental Study

Authors

  • Huda Elgendi Department of Biomaterials, Sinai University, Kantara Branch, El Qantara El Sharqiya, Egypt https://orcid.org/0000-0002-9100-516X
  • Mai Hamdy Department of Endodontics, Suez Canal University, Ismailia, Egypt

DOI:

https://doi.org/10.3889/oamjms.2022.8318

Keywords:

Agar diffusion test, Antibacterial, GSE, Mineral trioxide aggregate

Abstract

AIM: This study aims to evaluate and compare the antibacterial potential of mineral trioxide aggregate (MTA) and grape seed extract (GSE) against Streptococcus mutans, Enterococcus faecalis, Staph aureus, Candida albicans, Lactobacillus spp., and Streptococcus sobrinus.

HYPOTHESIS: We hypothesized that GSE could have potent antimicrobial effect against oral pathogens when compared to MTA.

MATERIALS AND METHODS: MTA and GSE were utilized to determine the antibacterial effectiveness against S. mutans, E. faecalis, S. aureus, C. albicans, Lactobacillus spp. and S. sobrinus using the agar well diffusion test. The tested materials were used according to the manufacturer’s instructions and put into the prepared wells of agar plates; diluted inocula (105 and 106 CFU/ml) of the tested microorganism strains were also used. For bacteria, all plates were incubated at 37°C in anaerobic conditions, and for C. albicans, at 30°C. The inhibitory zones were determined after 3 days. A digital caliper was used to measure the diameter of bacterial inhibition zones surrounding each well to the nearest size in mm.

RESULTS: GSE-created inhibition zones against all tested microorganisms except C. albicans, zones were significantly larger than MTA-created zones (p < 0.05).

CONCLUSION: Both MTA and GSE showed antimicrobial effect against all tested microorganisms except C. albicans, which will pave the route to use GSE as a natural herbal substitute of MTA.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

Bergenholtz G. Advances since the paper by Zander and Glass (1949) on the pursuit of healing methods for pulpal exposures: Historical perspectives. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2015;100 2 Suppl: S102-8. https://doi.org/10.1016/j.tripleo.2005.03.032 PMid:16037786 DOI: https://doi.org/10.1016/j.tripleo.2005.03.032

Gandoli MG, Taddei P, Siboni F, Modena E, De SteFano ED, Prati C. Biomimetic remineralization of human dentin using promising innovative calcium-silicate hybrid “smart” materials. Dent Mater. 2011;27:1055-69. https://doi.org/10.1016/j.dental.2011.07.007 PMid:21840044 DOI: https://doi.org/10.1016/j.dental.2011.07.007

Neelakantan P, Rao CV, Indramohan J. Bacteriology of deep carious lesions underneath amalgam restorations with different pulp-capping materials – An in vivo analysis. J Appl Oral Sci. 2012;20:139-45. https://doi.org/10.1590/s1678-77572012000200003 PMid:22666827 DOI: https://doi.org/10.1590/S1678-77572012000200003

Pashley DH. Dynamics of the pulpo-dentin complex. Crit Rev Oral Biol Med 1996;7:104-33. https://doi.org/10.1177/10454411960070020101 PMid:8875027 DOI: https://doi.org/10.1177/10454411960070020101

Porteneier I, Waltimo TM, Haapasalo M. Enterococcus faecalis the root canal survivor and ‘star’ in post-treatment disease. Endod Topics. 2003;6:135-59. DOI: https://doi.org/10.1111/j.1601-1546.2003.00040.x

Estrela C, Bammann LL, Estrela CR, Silva RS, Pecora JD. Antimicrobial and chemical study of MTA, Portland cement, calcium hydroxide paste, Sealapex and Dycal. Braz Dent J. 2000;11(1):3-9. PMid:11210272

Siqueira JF Jr. Aetiology of root canal treatment failure: Why well-treated teeth can fail. Int Endod J. 2001;34(1):1-10. https://doi.org/10.1046/j.1365-2591.2001.00396.x PMid:11307374 DOI: https://doi.org/10.1046/j.1365-2591.2001.00396.x

Torabinejad M, Hong CU, McDonald F, Pitt Ford TR. Physical and chemical properties of a new root-end filling material. J Endod. 1995;21:349-53. https://doi.org/10.1016/S0099-2399(06)80967-2 PMid:7499973 DOI: https://doi.org/10.1016/S0099-2399(06)80967-2

Parirokh M, Torabinejad M. Mineral trioxide aggregate: A comprehensive literature review – Part I: Chemical, physical, and antibacterial properties. J Endod. 2010;36:16-27. https://doi.org/10.1016/j.joen.2009.09.006 PMid:20003930 DOI: https://doi.org/10.1016/j.joen.2009.09.006

Torabinejad M, Parirokh M. Mineral trioxide aggregate: A comprehensive literature review – Part II: Leakage and biocompatibility investigations. J Endod. 2010;36(2):190-202. https://doi.org/10.1016/j.joen.2009.09.010 PMid:20113774 DOI: https://doi.org/10.1016/j.joen.2009.09.010

Baydar NG, Sagdic O, Ozkan G, Cetin S. Determination of antibacterial effects and total phenolic contents of grape [Vitis vinifera L.] seed extracts. Int J Food Sci Technol. 2006;41:799-804. DOI: https://doi.org/10.1111/j.1365-2621.2005.01095.x

Corrales M, Han JH, Tauscher B. Antimicrobial properties of grape seed extracts and their effectiveness after incorporation into pea starch films. Int J Food Sci Technol. 2009;44:425-33. DOI: https://doi.org/10.1111/j.1365-2621.2008.01790.x

Sundqvist G, Figdor D, Persson S, Sjögren U. Microbiologic analysis of teeth with failed endodontic treatment and the outcome of conservative re-treatment. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1998;85:86-93. https://doi.org/10.1016/s1079-2104(98)90404-8 PMid:9474621 DOI: https://doi.org/10.1016/S1079-2104(98)90404-8

Ito S, Saito T, Tay FR, Carvalho RM, Yoshiyama M, Pashley DH. Water content and apparent stiffness of non-caries versus caries-affected human dentin. J Biomed Mater Res B Appl Biomater. 2005;72(1):109-16. https://doi.org/10.1002/jbm.b.30130 PMid:15389491 DOI: https://doi.org/10.1002/jbm.b.30130

Castellan CS, Pereira PN, Viana G, Chen SN, Pauli GF, Bedran-Russo AK. Solubility study of phytochemical cross-linking agents on dentin stiffness. J Dent. 2010;38(5):431-6. https://doi.org/10.1016/j.jdent.2010.02.002 PMid:20171257 DOI: https://doi.org/10.1016/j.jdent.2010.02.002

Chan YH. Biostatistics 102: Quantitative data – Parametric and non-parametric tests. Singapore Med J. 2003;44(8):391-6. PMid:14700417

Shrestha B, Srithavaj Theerathavaj ML, Thaweboon S, Thaweboon B. In vitro antimicrobial effects of grape seed extract on peri-implantitis microflora in craniofacial implants. Asian Pac J Trop Biomed. 2012;2(10):822-5. https://doi.org/10.1016/S2221-1691(12)60236-6 PMid:23569854 DOI: https://doi.org/10.1016/S2221-1691(12)60236-6

Song YJ, Yu HH, Kim YJ, Lee NK, Paik HD. Anti-biofilm activity of grapefruit seed extract against Staphylococcus aureus and Escherichia coli. J Microbiol Biotechnol. 2019;29(8):1177-83. DOI: https://doi.org/10.4014/jmb.1905.05022

Estrela C, Sydney GB, Bammann LL, Felippe O Jr. Mechanism of action of calcium and hydroxyl ions of calcium hydroxide on tissue and bacteria. Braz Dent J. 1995;6:85-90. PMid:8688662

Koruyucu M, Topcuoglu N, Tuna EB, Ozel S, Gencay K, Kulekci G, et al. An assessment of antibacterial activity of three pulp capping materials on Enterococcus faecalis by a direct contact test: An in vitro study. Eur J Dent. 2015;9:240-5. https://doi.org/10.4103/1305-7456.156837 PMid:26038657 DOI: https://doi.org/10.4103/1305-7456.156837

Fridland M, Rosado R. Mineral trioxide aggregate (MTA) solubility and porosity with different water-to-powder ratios. J Endod. 2003;29(12):814-7. https://doi.org/10.1097/00004770-200312000-00007 PMid:14686812 DOI: https://doi.org/10.1097/00004770-200312000-00007

Yan P, Peng B, Fan B, Fan M, Bian Z. The effects of sodium hypochlorite (5.25%), chlorhexidine (2%), and glyde file prep on the bond strength of MTA-dentin. J Endod. 2006;32(1):58-60. https://doi.org/10.1016/j.joen.2005.10.016 PMid:16410071 DOI: https://doi.org/10.1016/j.joen.2005.10.016

Stowe TJ, Sedgley CM, Stowe B, Fenno JC. The effects of chlorhexidine gluconate (0.12%) on the antimicrobial properties of tooth-colored ProRoot mineral trioxide aggregate. J Endod. 2004;30(6):429-31. https://doi.org/10.1097/00004770-200406000-00013 PMid:15167473 DOI: https://doi.org/10.1097/00004770-200406000-00013

Manochehrifar H, Parirokh M, Kakooei S, Oloomi MM. The effect of mineral trioxide aggregate mixed with chlorhexidine as direct pulp capping agent in dogs teeth: A histologic study. Iran Endod J. 2016;11(4):320-4. https://doi.org/10.22037/iej.2016.12 PMid:27790263

Yasuda Y, Kamaguchi A, Saito T. In vitro evaluation of the antimicrobial activity of a new resin-based endodontic sealer against endodontic pathogens. J Oral Sci. 2008;50(3):309-13. https://doi.org/10.2334/josnusd.50.309 PMid:18818467 DOI: https://doi.org/10.2334/josnusd.50.309

Marie AF. Oligomeric proanthocyanidin complexes: History, structure, and phytopharmaceutical applications. Altern Med Rev. 2000;5(2):144-51. PMid:10767669

Siquiera JF, Sen BH. Fungi in endodontic infections. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2004;97:632-41. https://doi.org/10.1016/S1079210404000046 PMid:15153878 DOI: https://doi.org/10.1016/j.tripleo.2003.12.022

Hiremath GS, Kulkarni RD, Naik BD. Evaluation of minimal inhibitory concentration of two new materials using tube dilution method: An in vitro study. J Conserv Dent. 2015;18(2):159-62. https://doi.org/10.4103/0972-0707.153056 PMid:25829698 DOI: https://doi.org/10.4103/0972-0707.153056

Downloads

Published

2022-05-22

How to Cite

1.
Elgendi H, Hamdy M. Antimicrobial Potential of Grape Seed Extract and MTA: A Comparative Experimental Study. Open Access Maced J Med Sci [Internet]. 2022 May 22 [cited 2024 Nov. 21];10(A):1139-42. Available from: https://oamjms.eu/index.php/mjms/article/view/8318