Plasma Calcium and Phosphorus Levels and Cardiovascular Disease Risks in Egyptian Type 2 Diabetic Patients

Authors

DOI:

https://doi.org/10.3889/oamjms.2022.8340

Keywords:

Egyptian diabetics, Plasma calcium, Plasma phosphorus, Plasma albumin, Lipid profile, Cardiovascular diseases, Anthropometric parameters, Nutrients’ intake

Abstract

Background: Cardiovascular complication of diabetes is considered an important issue that needs deep investigations. The levels of plasma calcium (Ca) and phosphorus (P) have been implicated as having an association to cardiovascular diseases.

AIM: The objective of the present research was to study the plasma levels of both Ca and P and their association to the atherogenic ratio; total cholesterol: high density lipoprotein-cholesterol and the plasma albumin in male and female patients with type 2-diabetes. The interrelation between anthropometric parameters represented by body mass index (BMI), waist circumference and waist/hip ratio with Ca and P were studied. Also, the association between plasma Ca and P with their dietary intake were investigated.

Subjects and METODS: Thirty-one type 2-diabetic male and female patients participated in the study, in addition of ten healthy subjects. Biochemical parameters, anthropometric measurements and nutrients′ intake were assessed. Biochemical parameters include plasma Ca, P, lipid profile, albumin, liver function tests and creatinine.

RESULTS: Plasma Ca levels of female patients of BMI> 30 kg/m2 demonstrated significant increase compared to the control group.  All male and female patients showed significant increase in plasma P compared to the control group. Glycosylated hemoglobin of male and females showed significant high values compared to the control group except for diabetic male of BMI>30 kg/m2 that showed insignificant increase. No significant changes in plasma TG and LDL-C levels were noticed compared to the control.  Plasma TC of patients showed significant high levels compared to the control group. The levels of HDL-C of patients were significantly lower than that of the control. The ratios of TC/HDL-C diabetic patients either male or female and whatever their BMI were significantly higher than that of the control. No significant changes in plasma activities of ALT and AST and bilirubin levels were observed among the different groups including the control.  Plasma albumin levels demonstrated significant reduction compared to the control group whatever their sexes or BMI. Plasma creatinine levels of the different diabetic groups showed insignificant change from the control group except for the male group of BMI<30 kg/m2 that showed significant elevation. In male, plasma Ca showed significant negative correlation with albumin and positive correlation with creatinine and dietary vitamin D. In female, a significant positive correlation was noticed between plasma and dietary P while a negative correlation was observed between plasma Ca and dietary iron.

CONCLUSION: Elevated of plasma P together with reduced plasma albumin and elevated TC/HDL-C may reflect an association of plasma P to CVD in male and female diabetic subjects while high plasma Ca might predict CVD in only female diabetic patients of BMI > 30 kg/m2.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

Van Dieren S, Beulens JW, van der Schouw YT, Grobbee DE, Neal B. The global burden of diabetes and its complications: An emerging pandemic. Eur J Cardiovasc Prev Rehabil. 2010;17(Suppl 1):S3-8. https://doi.org/10.1097/01.hjr.0000368191.86614.5a PMid:20489418 DOI: https://doi.org/10.1097/01.hjr.0000368191.86614.5a

Danaei G, Finucane MM, Lu Y, Singh GM, Cowan MJ, Paciorek CJ, et al. National, regional, and global trends in fasting plasma glucose and diabetes prevalence since 1980: systematic analysis of health examination surveys and epidemiological studies with 370 country-years and 27 million participants. Lancet. 2011;378(9785):31-40. https://doi.org/10.1016/S0140-6736(11)60679-X PMid:21705069 DOI: https://doi.org/10.1016/S0140-6736(11)60679-X

American Diabetes Association. Standards of medical care in diabetes d2013. Diabetes Care. 2013;36(Suppl 1):S11-66. https://doi.org/10.2337/dc13-S011 PMid:23264422 DOI: https://doi.org/10.2337/dc13-S011

Håglin L, Törnkvist B, Bäckman L. Prediction of all-cause mortality in a patient population with hypertension and Type 2 DM by using traditional risk factors and serum-phosphate,- calcium and-magnesium. Acta Diabetol. 2007;44(3):138-43. https://doi.org/10.1007/s00592-007-0254-6 PMid:17721752 DOI: https://doi.org/10.1007/s00592-007-0254-6

Peacock M. Calcium metabolism in health and disease. Clin J Am Soc Nephrol. 2010;5(Suppl 1):S23-30. https://doi.org/10.2215/CJN.05910809 PMid:20089499 DOI: https://doi.org/10.2215/CJN.05910809

Becerra-Tomás N, Estruch R, Bulló M, Casas R, Díaz-López A, Basora J, et al. Increased serum calcium levels and risk of Type 2 diabetes in individuals at high cardiovascular risk. Diabetes Care. 2014;37(11):3084-91. https://doi.org/10.2337/dc14-0898 PMid:25139884 DOI: https://doi.org/10.2337/dc14-0898

Ojuka EO, Jones TE, Nolte LA, Chen M, Wamhoff BR, Sturek M, et al. Regulation of GLUT4 biogenesis in muscle: Evidence for involvement of AMPK and Ca(2+). Am J Physiol Endocrinol Metab. 2002;282(5):E1008-13. https://doi.org/10.1152/ajpendo.00512.2001 PMid:11934664 DOI: https://doi.org/10.1152/ajpendo.00512.2001

Mears D. Regulation of insulin secretion in islets of Langerhans by Ca(2+) channels. J Membr Biol. 2004;200(2):57-66. https://doi.org/10.1007/s00232-004-0692-9 PMid:15520904 DOI: https://doi.org/10.1007/s00232-004-0692-9

Henquin JC. Triggering and amplifying pathways of regulation of insulin secretion by glucose. Diabetes. 2000;49(11):1751-60. https://doi.org/10.2337/diabetes.49.11.1751 PMid:11078440 DOI: https://doi.org/10.2337/diabetes.49.11.1751

Sun G, Vasdev S, Martin GR, Gadag V, Zhang H. Altered calcium homeostasis is correlated with abnormalities of fasting serum glucose, insulin resistance, and beta-cell function in the Newfoundl and population. Diabetes. 2005;54(11):3336-9. https://doi.org/10.2337/diabetes.54.11.3336 PMid:16249463 DOI: https://doi.org/10.2337/diabetes.54.11.3336

Reis JP, Michos ED, Selvin E, Pankow JS, Lutsey PL. Race, Vitamin D-binding protein gene polymorphisms, 25-hydroxyvitamin D, and incident diabetes: The atherosclerosis risk in communities (ARIC) study. Am J Clin Nutr. 2015;101(6):1232-40. https://doi.org/10.3945/ajcn.115.107334 PMid:25926504 DOI: https://doi.org/10.3945/ajcn.115.107334

Lind L, Jakobsson S, Lithell H, Wengle B, Ljunghall S. Relation of serum calcium concentration to metabolic risk factors for cardiovascular disease. BMJ. 1988;297(6654):960-3. https://doi.org/10.1136/bmj.297.6654.960 PMid:3142567 DOI: https://doi.org/10.1136/bmj.297.6654.960

Reid IR, Bristow SM, Bolland MJ. Calcium and cardiovascular disease. Endocrinol Metab. 2017;32(3):339-49. https://doi.org/10.3803/EnM.2017.32.3.339 PMid:28956363 DOI: https://doi.org/10.3803/EnM.2017.32.3.339

Schmitz T, Thilo C, Linseisen J, Heier M, Peters A, Kuch B, et al. Low serum calcium is associated with higher long-term mortality in myocardial infarction patients from a population-based registry. Sci Rep. 2021;11(1):2476. https://doi.org/10.1038/s41598-021-81929-7 PMid:33510279 DOI: https://doi.org/10.1038/s41598-021-81929-7

Bryant RJ, Wastney ME, Martin BR, Wood O, McCabe GP, Morshidi M, et al. Racial differences in bone turnover and calcium metabolism in adolescent females. J Clin Endocrinol Metab. 2003;88(3):1043-7. https://doi.org/10.1210/jc.2002-021367 PMid:12629083 DOI: https://doi.org/10.1210/jc.2002-021367

Kebler R, McDonald FD, Cadnapaphornchai P. Dynamic changes in serum phosphorus levels in diabetic ketoacidosis. Am J Med. 1985;79(5):571-6. PMid:3933341 DOI: https://doi.org/10.1016/0002-9343(85)90053-1

Raikou VD, Kyriaki D, Gavriil S. Importance of serum phosphate in elderly patients with diabetes mellitus. World J Diabetes. 2020;11(10):416-24. https://doi.org/10.4239/wjd.v11.i10.416 PMid:33133389 DOI: https://doi.org/10.4239/wjd.v11.i10.416

Toussaint ND, Pedagogos E, Tan SJ, Badve SV, Hawley CM, Perkovic V, et al. Phosphate in early chronic kidney disease: Associations with clinical outcomes and a target to reduce cardiovascular risk. Nephrology (Carlton). 2012;17(5):433-44. https://doi.org/10.1111/j.1440-1797.2012.01618.x PMid:22574672 DOI: https://doi.org/10.1111/j.1440-1797.2012.01618.x

Sigrist M, Tang M, Beaulieu M, Espino-Hernandez G, Er L, Djurdjev O, Levin A. Responsiveness of FGF23 and mineral metabolism to altered dietary phosphate intake in chronic kidney disease (CKD): Results of a randomized trial. Nephrol Dial Transplant. 2013;28(1):161-9. https://doi.org/10.1093/ndt/gfs405 PMid:23024219 DOI: https://doi.org/10.1093/ndt/gfs405

Tonelli M, Sacks F, Pfeffer M, Gao Z, Curhan G. Relation between serum phosphate level and cardiovascular event rate in people with coronary disease. Circulation. 2005;112(17):2627-33. https://doi.org/10.1161/CIRCULATIONAHA.105.553198 PMid:16246962 DOI: https://doi.org/10.1161/CIRCULATIONAHA.105.553198

Hanif R, Sattar A, Qayum I. FBG and TC/HDL ratios in Type 2 diabetes mellitus. J Ayub Med Coll Abbottabad. 2001;13(2):42-4. PMid:11732222

Suzuki S, Hashizume N, Kanzaki Y, Maruyama T, Kozuka A, Yahikozawa K. Prognostic significance of serum albumin in patients with stable coronary artery disease treated by percutaneous coronary intervention. PLoS One. 2019;14(7):e0219044. PMid:31269058 DOI: https://doi.org/10.1371/journal.pone.0219044

World Health Organization. Waist Circumference and Waist-Hip Ratio, Report of a WHO Expert Consultation, 8-11 December 2008Retrieved March 21. Geneva: World Health Organization; 2012.

Sebo B, Herrman FR, Haller DM. Accuracy of anthropometric measurements by general practitioners in overweight and obese patients. BMC Obes. 2017;4:23. https://doi.org/10.1186/s40608-017-0158-0 PMid:28680647 DOI: https://doi.org/10.1186/s40608-017-0158-0

Food Composition Tables for Egypt. National Nutrition Institute, Ministry of Health and Population. 2nd ed. Cairo, Egypt: Food Composition Tables for Egypt; 2006.

Nutrisurvey for Windows. Copyright (C) Dr. Juergen Erhardt SEAMEO-TROPMED RCCN-University of Indonesia; 2007.

Institute of Medicine of the National Academies, Food and Nutrition Board 2005. Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein, and Amino Acids. Washington, DC: The National Academies Press; https://doi.org/10.17226/10490 DOI: https://doi.org/10.17226/10490

Institute of Medicine of the National Academies. Dietary Reference Intakes: The Essential Guide to Nutrient Requirements. Washington, DC: The National Academies Press; 2006. https://doi.org/10.17226/11537 DOI: https://doi.org/10.17226/11537

Gonen B, Rubenstein AH. Determination of glycohemoglobin. Diabetologia. 1978;15:1-5. https://doi.org/10.1007/BF01219319 DOI: https://doi.org/10.1007/BF01219319

Kessler G, Wolfman M. An automated procedure for the simultaneous determination of calcium and phosphorus. Clin Chem. 1964;10(8):686-703. DOI: https://doi.org/10.1093/clinchem/10.8.686

Daly JA, Ertingshausen G. Direct method for determining inorganic phosphate in serum with the “CentrifiChem”. Clin Chem. 1972;18(3):263-5. PMid:5020822 DOI: https://doi.org/10.1093/clinchem/18.3.263

Schriewer H, Kohnert U, Assmann G. Determination of LDL cholesterol and LDL apolipoprotein B following precipitation of VLDL in blood serum with phosphotungstic acid/MgCl2. J Clin Chem Clin Biochem. 1984;22(1):35-40. https://doi.org/10.1515/cclm.1984.22.1.35 PMid:6699550 DOI: https://doi.org/10.1515/cclm.1984.22.1.35

Fossati P, Prencipe L. Serum triglycerides determined colorimetrically with an enzyme that produces hydrogen peroxide. Clin Chem. 1982;28(10):2077-80. PMid:6812986 DOI: https://doi.org/10.1093/clinchem/28.10.2077

Burstein M, Scholnick HR, Morfin R. Rapid method for the isolation of lipoproteins from human serum by precipitation with polyanions. J Lipid Res. 1970;11(6):583-95. PMid:4100998 DOI: https://doi.org/10.1016/S0022-2275(20)42943-8

Allain CC, Poon LS, Chan CS, Richmond W, Fu PC. Enzymatic determination of total serum cholesterol. Clin Chem. 1974;20(4):470-5. PMid:4818200 DOI: https://doi.org/10.1093/clinchem/20.4.470

Reitman S, Frankel S. A colorimetric method for the determination of serum glutamic oxalacetic and glutamic pyruvic transaminases. Am J Clin Pathol. 1957;28(1):56-63. https://doi.org/10.1093/ajcp/28.1.56 PMid:13458125 DOI: https://doi.org/10.1093/ajcp/28.1.56

Babson AL, Greeley SJ, Coleman CM, Phillips GE. Phenolphthalein monophosphate as a substrate for serum alkaline phosphatase. Clin Chem. 1966;12(8):482-90. PMid:5917856 DOI: https://doi.org/10.1093/clinchem/12.8.482

Gambino SR. In: Meites S, editor. Standard Methods of Clinical Chemistry. Vol. 5. New York: Academic Press; 1965. p. 55-64. DOI: https://doi.org/10.1016/B978-1-4831-9686-2.50012-2

Doumas BT, Watson WA, Biggs HG. Albumin standards and the measurement of serum albumin with bromcresol green. Clin Chim Acta. 1971;31(1):87-96. https://doi.org/10.1016/0009-8981(71)90365-2 PMid:5544065 DOI: https://doi.org/10.1016/0009-8981(71)90365-2

Bartels H, Böhmer M, Heierli C. Serum creatinine determination without protein precipitation. Clin Chim Acta. 1972;37:193-7. https://doi.org/10.1016/0009-8981(72)90432-9 PMid:5022083 DOI: https://doi.org/10.1016/0009-8981(72)90432-9

World Health Organization. The SuRF Report 2. The Surveillance of Risk Factors Report Series (SuRF). Geneva: World Health Organization; 2005. p. 22.

De Boer IH, Sibley SD, Kestenbaum B, Sampson JN, Young B, Cleary PA, et al. Central obesity, incident microalbuminuria, and change in creatinine clearance in the epidemiology of diabetes interventions and complications study. J Am Soc Nephrol. 2007;18(1):235-43. https://doi.org/10.1681/ASN.2006040394 PMid:17151331 DOI: https://doi.org/10.1681/ASN.2006040394

Yamaguchi T, Kanazawa I, Takaoka S, Sugimoto T. Serum calcium is positively correlated with fasting plasma glucose and insulin resistance, independent of parathyroid hormone, in male patients with Type 2 diabetes mellitus. Metabolism. 2011;60(9):1334-9. https://doi.org/10.1016/j.metabol.2011.02.003 PMid:21489574 DOI: https://doi.org/10.1016/j.metabol.2011.02.003

Hagstrom E, Hellman P, Lundgren E, Lind L, Arnlov J. Serum calcium is independently associated with insulin sensitivity measured with euglycaemic-hyperinsulinaemic clamp in a community-based cohort. Diabetologia. 2007;50(2):317-24. https://doi.org/10.1007/s00125-006-0532-9 PMid:17180664 DOI: https://doi.org/10.1007/s00125-006-0532-9

Wareham NJ, Byrne CD, Carr C, Day NE, Boucher BJ, Hales CN. Glucose intolerance is associated with altered calcium homeostasis: A possible link between increased serum calcium concentration and cardiovascular disease mortality. Metabolism. 1997;46:1171-7. https://doi.org/10.1016/ s0026-0495(97)90212-2 PMid:9322802 DOI: https://doi.org/10.1016/S0026-0495(97)90212-2

Draznin B, Lewis D, Houlder N, Draznin B, Lewis D, Houlder N, et al. Mechanism of insulin resistance induced by sustained levels of cytosolic free calcium in rat adipocytes. Endocrinology. 1989;125(5):2341-49. https://doi.org/10.1210/endo-125-5-2341 PMid:2551647 DOI: https://doi.org/10.1210/endo-125-5-2341

Jorde R, Schirmer H, Njølstad I, Løchen ML, Mathiesen EB, Kamycheva E, et al. Serum calcium and the calcium-sensing receptor polymorphism rs17251221 in relation to coronary heart disease, Type 2 diabetes, cancer and mortality: The Tromsø Study. Eur J Epidemiol. 2013;28(7):569-78. https://doi.org/10.1007/s10654-013-9822-y PMid:23860708 DOI: https://doi.org/10.1007/s10654-013-9822-y

Lorenzo C, Hanley AJ, Rewers MJ, Haffner SM. Calcium and phosphate concentrations and future development of Type 2 diabetes: The insulin resistance atherosclerosis study. Diabetologia. 2014;57(7):1366-74. DOI: https://doi.org/10.1007/s00125-014-3241-9

Jorde R, Sundsfjord J, Fitzgerald P, Bønaa KH. Serum calcium and cardiovascular risk factors and diseases The Tromsø Study. Hypertension. 1999;34(3):484-90. https://doi.org/10.1161/01.hyp.34.3.484 PMid:10489398 DOI: https://doi.org/10.1161/01.HYP.34.3.484

Moore EW. Ionized calcium in normal serum, ultrafiltrates and whole blood determined by ion-exchange calcium electrodes. J Clin Invest. 1970;49(2):318-34. https://doi.org/10.1172/JCI106241 PMid:4983663 DOI: https://doi.org/10.1172/JCI106241

Ladenson JH, Lewis JW, Boyd JC. Failure of total calcium corrected for protein, albumin, and pH to correctly assess free calcium status. J Clin Endocrinol Metab. 1978;46(6):986-93. https://doi.org/10.1210/jcem-46-6-986 PMid:45478 DOI: https://doi.org/10.1210/jcem-46-6-986

Hu H, Sparrow D, Weiss S. Association of serum albumin with blood pressure in the normative aging study. Am J Epidemiol. 1992;136(12):1465-73. https://doi.org/10.1093/oxfordjournals.aje.a116467 PMid:1288276 DOI: https://doi.org/10.1093/oxfordjournals.aje.a116467

Fang L, Li X. Level of serum phosphorus and adult Type 2 diabetes mellitus. Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2016;41(5):502-6. https://doi.org/10.11817/j.issn.1672-7347.2016.05.009 PMid:27269925

Bringhurst FR, Demay BM, Krane SM, Kronenberg HM. Bone and mineral metabolism in health and disease. In: Kasper DL, Braunwald E, Fauci AS, Hauser SL, Longo DL, Jameson L, Isselbacher KJ, editors. Harrison’s Principles of Internal Medicine. New York: McGraw-Hill; 2004.

Blumsohn A. What have we learnt about the regulation of phosphate metabolism? Curr Opin Nephrol Hypertens. 2004;13(4):397-401. https://doi.org/10.1097/01.mnh.0000133983.40182.c3 PMid:15199289 DOI: https://doi.org/10.1097/01.mnh.0000133983.40182.c3

Goodman WG, London G, Amann K, Block GA, Giachelli C, Hruska KA, et al. Vascular calcification in chronic kidney disease. Am J Kidney Dis. 2004;43(3):572-9. https://doi.org/10.1053/j.ajkd.2003.12.005 PMid:14981617 DOI: https://doi.org/10.1053/j.ajkd.2003.12.005

Kestenbaum B, Sampson JN, Rudser KD, Patterson DJ, Seliger S, Young B, et al. Serum phosphate levels and mortality risk among persons with chronic kidney disease. J Am Soc Nephrol. 2005;16(2):520-8. https://doi.org/10.1681/ASN.2004070602 PMid:15615819 DOI: https://doi.org/10.1681/ASN.2004070602

Ganesh SK, Stack AG, Levin NW, Hulbert-Shearon T, Port FK. Association of elevated serum PO (4), Ca x PO(4) product, and parathyroid hormone with cardiac mortality risk in chronic hemodialysis patients. J Am Soc Nephrol. 2001;12(10):2131-8. https://doi.org/10.1681/ASN.V12102131 PMid:11562412 DOI: https://doi.org/10.1681/ASN.V12102131

Park KS, Lee Y, Park GM, Park JH, Kim YG, Yang DH, et al. Association between serum phosphorus and subclinical coronary atherosclerosis in asymptomatic Korean individuals without kidney dysfunction. Am J Clin Nutr. 2020;112(1):66-73. https://doi.org/10.1093/ajcn/nqaa091 PMid:32453399 DOI: https://doi.org/10.1093/ajcn/nqaa091

Sabbagh Y, O’Brien SP, Song W, Boulanger JH, Stockmann A, Arbeeny C, et al. Intestinal npt2b plays a major role in phosphate absorption and homeostasis. J Am Soc Nephrol. 2009;20(11):2348-58. https://doi.org/10.1681/ASN.2009050559 PMid:19729436 DOI: https://doi.org/10.1681/ASN.2009050559

Takashi Y, Fukumoto S. Fibroblast growth factor receptor as a potential candidate for phosphate sensing. Curr Opin Nephrol Hypertens. 2020;29(4):446-52. https://doi.org/10.1097/MNH.0000000000000618 PMid:32427693 DOI: https://doi.org/10.1097/MNH.0000000000000618

Centeno PP, Herberger A, Mun HC, Tu C, Nemeth EF, Chang W, et al. Phosphate acts directly on the calcium-sensing receptor to stimulate parathyroid hormone secretion. Nat Commun. 2019;10:4693. https://doi.org/10.1038/s41467-019-12399-9 DOI: https://doi.org/10.1038/s41467-019-12399-9

Chande S, Bergwitz, C. Role of phosphate sensing in bone and mineral metabolism. Nat Rev Endocrinol. 2018;14(11):637-55. https://doi.org/10.1038/s41574-018-0076-3 PMid:30218014 DOI: https://doi.org/10.1038/s41574-018-0076-3

Tan SJ, Satake S, Smith ER, Toussaint ND, Hewitson TD, Holt SG. Parenteral iron polymaltose changes i: c-terminal FGF23 ratios in iron deficiency, but not in dialysis patients. Eur J Clin Nutr. 2017;71(2):180-4. https://doi.org/10.1038/ejcn.2016.217 PMid:27848940 DOI: https://doi.org/10.1038/ejcn.2016.217

Bär L, Feger M, Fajol A, Klotz LO, Zeng S, Lang F, et al. Insulin suppresses the production of fibroblast growth factor 23 (FGF23). Proc Natl Acad Sci U S A. 2018;115(22):5804-9. https://doi.org/10.1073/pnas.1800160115 PMid:29760049 DOI: https://doi.org/10.1073/pnas.1800160115

van Vuren AJ, Eisenga MF, van Straaten S, Glenthøj A, Gaillard CA, Bakker SJ, et al. Interplay of erythropoietin, fibroblast growth factor 23, and erythroferrone in patients with hereditary hemolytic anemia. Blood Adv. 2020;4(8):1678-82. https://doi.org/10.1182/bloodadvances.2020001595 PMid:32324886 DOI: https://doi.org/10.1182/bloodadvances.2020001595

Foley RN, Collins AJ, Ishani A, Kalra PA. Calcium-phosphate levels and cardiovascular disease in community-dwelling adults: The atherosclerosis risk in communities (ARIC) study. Am Heart J. 2008;156(3):556-63. https://doi.org/10.1016/j.ahj.2008.05.016 PMid:18760141 DOI: https://doi.org/10.1016/j.ahj.2008.05.016

Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults. Executive summary of the third report of the national cholesterol education program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (adult treatment panel III). JAMA. 2001;285(19):2486-97. https://doi.org/10.1001/jama.285.19.2486 PMid:11368702 DOI: https://doi.org/10.1001/jama.285.19.2486

Kleinman JC, Donahue RP, Harris MI, Finucane FF, Madans JH, Brock DB. Mortality among diabetics in a national sample. Am J Epidemiol. 1988;128(2):389-401. https://doi.org/10.1093/oxfordjournals.aje.a114979 PMid:3394705 DOI: https://doi.org/10.1093/oxfordjournals.aje.a114979

Goldberg IJ. Diabetic dyslipidemia: Causes and consequences. J Clin Endocrinol Metab 2001;86(3):965-72. https://doi.org/10.1210/jcem.86.3.7304 PMid:11238470 DOI: https://doi.org/10.1210/jcem.86.3.7304

Gimeno-Orna JA, Faure-Nogueras E, Sancho-Serrano MA. Usefulness of total cholesterol/HDL-cholesterol ratio in the management of diabetic dyslipidaemia. Diabetic Med. 2004;22(1):26-31. https://doi.org/10.1111/j.1464-5491.2004.01341.x PMid:15606687 DOI: https://doi.org/10.1111/j.1464-5491.2004.01341.x

Ridker PM, Hennekens CH, Buring JE, Rifai N. C-Reactive protein and others markers of inflammation in the prediction of cardiovascular disease in women. N Engl J Med. 2000;342(12):836-43. https://doi.org/10.1056/NEJM200003233421202 PMid:10733371 DOI: https://doi.org/10.1056/NEJM200003233421202

Retnakaran R, Cull CA, Thorne KI, Adler AI, Holman RR; UKPDS Study Group. Risk factors for renal dysfunction in Type 2 diabetes: U.K. prospective diabetes study 74. Diabetes. 2006;55(6):1832-9. https://doi.org/10.2337/db05-1620 PMid:16731850 DOI: https://doi.org/10.2337/db05-1620

Fioretto P, Dodson PM, Ziegler D, Rosenson RS. Residual microvascular risk in diabetes: Unmet needs and future directions. Nat Rev Endocrinol. 2010;6(1):19-25. https://doi.org/10.1038/nrendo.2009.213 PMid:19859073 DOI: https://doi.org/10.1038/nrendo.2009.213

Molitch ME, DeFronzo RA, Franz MJ, Keane WF, Mogensen CE, Parving HH, et al. Diabetic nephropathy. Diabetes Care. 2003;26(Suppl 1):S94-8. https://doi.org/10.2337/diacare.26.2007.s94 PMid:12502629 DOI: https://doi.org/10.2337/diacare.26.2007.S94

Abrass CK. Lipid metabolism and renal disease. Contrib Nephrol. 2006;151:106-21. https://doi.org/10.1159/000095323 PMid:16929136 DOI: https://doi.org/10.1159/000095323

Wang Z, Jiang T, Li J, Proctor G, McManaman JL, Lucia S, et al. Regulation of renal lipid metabolism, lipid accumulation, and glomerulosclerosis in FVBdb/db mice with Type 2 diabetes. Diabetes. 2005;54(8):2328-35. https://doi.org/10.2337/diabetes.54.8.2328 PMid:16046298 DOI: https://doi.org/10.2337/diabetes.54.8.2328

Tsun JG, Yung S, Chau MK, Shiu SW, Chan TM, Tan KC. Cellular cholesterol transport proteins in diabetic nephropathy. PLoS One. 2014;9:e105787. https://doi.org/10.1371/journal.pone.0105787 PMid:25181357 DOI: https://doi.org/10.1371/journal.pone.0105787

Gopal, D, Kalogeropoulos AP, Georgiopoulou VV, Tang WW, Methvin A, Smith AL, et al. Serum albumin concentration and heart failure risk the health, aging, and body composition study. Am Heart J. 2010;160(2):279-85. https://doi.org/10.1016/j.ahj.2010.05.022 PMid:20691833 DOI: https://doi.org/10.1016/j.ahj.2010.05.022

Ronit A, Kirkegaard-Klitbo DM, Dohlmann TL, Lundgren J, Sabin CA, Phillips AN, et al. Plasma albumin and incident cardiovascular disease. Arterioscler Thromb Vasc Biol. 2020;40(2):473-82. https://doi.org/10.1161/ATVBAHA.119.313681 PMid:31852221 DOI: https://doi.org/10.1161/ATVBAHA.119.313681

Vincent JL, Russell JA, Jacob M, Martin G, Guidet B, Jan Wernerman, et al. Albumin administration in the acutely ill: What is new and where next? J Crit Care. 2014;18(4):231. https://doi.org/10.1186/cc13991 PMid:25042164 DOI: https://doi.org/10.1186/cc13991

Nicholson JP, Wolmarans MR, Park GR. The role of albumin in critical illness. Br J Anaesth. 2000;85(4):599-610. https://doi.org/10.1093/bja/85.4.599 PMid:11064620 DOI: https://doi.org/10.1093/bja/85.4.599

Tessari P, Kiwanuka E, Millioni R, Vettore M, Puricelli L, Zanetti M, et al. Albumin and fibrinogen synthesis and insulin effect in Type 2 diabetic patients with normoalbuminuria. Diabetes Care. 2006;29(2):323-8. https://doi.org/10.2337/diacare.29.02.06.dc05-0226 PMid:16443881 DOI: https://doi.org/10.2337/diacare.29.02.06.dc05-0226

Rodrıguez-Segade S, Rodrıguez J, Mayan D, Camina F. Plasma albumin concentration is a predictor of HbA1c among Type 2 diabetic patients, independently of fasting plasma glucose and fructosamine. Diabetes Care. 2005;28(2):437-9. https://doi.org/10.2337/diacare.28.2.437 PMid:15677811 DOI: https://doi.org/10.2337/diacare.28.2.437

Cheng PC, Hsu SR, Cheng YC. Association between serum albumin concentration and ketosis risk in hospitalized individuals with Type 2 diabetes Mellitus. J Diabetes Res. 2016;2016:1269706. https://doi.org/10.1155/2016/1269706 PMid:27504458 DOI: https://doi.org/10.1155/2016/1269706

Pandiyan S, Veerappan ST, Mohan MK. A study on the prevalence of hypoalbuminemia in the hospitalized Type 2 diabetes mellitus patients with acute hyperglycemia and its correlation with the risk to ketosis in these patients. Int J Adv Med. 2021;8(6):809-13. DOI: https://doi.org/10.18203/2349-3933.ijam20212104

Chang DC, Xu X, Ferrante AW Jr., Krakof J. Reduced plasma albumin predicts Type 2 diabetes and is associated with greater adipose tissue macrophage content and activation. Diabetol Metab Syndr. 2019;11:14. https://doi.org/10.1186/s13098-019-0409-y PMid:30774722 DOI: https://doi.org/10.1186/s13098-019-0409-y

Sattar N, Forrest E, Preiss D. Non-alcoholic fatty liver disease. BMJ. 2014;349:g4596. https://doi.org/10.1136/bmj.g4596 PMid:25239614 DOI: https://doi.org/10.1136/bmj.g4596

Angulo P. Nonalcoholic fatty liver disease. N Engl J Med. 2002;346(16):1221-31. https://doi.org/10.1056/NEJMra011775 PMid:11961152 DOI: https://doi.org/10.1056/NEJMra011775

Sanyal AJ; American Gastroenterological Association. AGA technical review on nonalcoholic fatty liver disease. Gastroenterology. 2002;123(5):1705-25. https://doi.org/10.1053/gast.2002.36572 PMid:12404245 DOI: https://doi.org/10.1053/gast.2002.36572

Al-Okbi SY. Role of nutraceuticals in prevention of nonalcoholic fatty liver. In: Goyal MR, Chauhan DN, editors. Plant and Marine Based Phytochemicals for Human Health: Attributes, Potential, and Use Apple Academic Press. Milton Park: Taylor and Francis; 2019. p. 131-49. DOI: https://doi.org/10.1201/9781351251983-5

NIH Publication. Chapter 2 Overweight and Obesity: Background. Clinical Guidelines on the Identification, Evaluation and Treatment of Overweight and Obesity in Adults. NIH Publication No. 98-4083 September; 1998. p. 14.

Mørkedal B, Romundstad PR, Vatten LJ. Informativeness of indices of blood pressure, obesity and serum lipids in relation to ischaemic heart disease mortality: The HUNT-II study. Eur J Epidemiol. 2011;26(6):457-61. https://doi.org/10.1007/s10654-011-9572-7 PMid:21461943 DOI: https://doi.org/10.1007/s10654-011-9572-7

Dobbelsteyn CJ, Joffres MR, MacLean DR, Flowerdew G. A comparative evaluation of waist circumference, waist-to-hip ratio and body mass index as indicators of cardiovascular risk factors. The Canadian Heart Health Surveys. Int J Obes Relat Metab Disord. 2001;25(5):652-61. https://doi.org/10.1038/sj.ijo.0801582 PMid:11360147 DOI: https://doi.org/10.1038/sj.ijo.0801582

Ketel IJ, Volman MN, Seidell JC, Stehouwer CD, Twisk JW, Lambalk CB. Superiority of skinfold measurements and waist over waist-to-hip ratio for determination of body fat distribution in a population-based cohort of Caucasian Dutch adults. Eur J Endocrinol. 2007;156(6):655-61. https://doi.org/10.1530/EJE-06-0730 PMid:17535865 DOI: https://doi.org/10.1530/EJE-06-0730

Picon PX, Leitão CB, Gerchman F, Azevedo MJ, Silveiro SP, Gross JL, et al. Waist measure and waist-to-hip ratio and identification of clinical conditions of cardiovascular risk: Multicentric study in Type 2 diabetes mellitus patients. Arq Bras Endocrinol Metabol. 2007;51(3):443-9. https://doi.org/10.1590/S0004-27302007000300013 PMid:17546244 DOI: https://doi.org/10.1590/S0004-27302007000300013

Downloads

Published

2022-03-25

How to Cite

1.
Al-Okbi S, Sabry S, Al-Siedy ESK, Elsayed S. Plasma Calcium and Phosphorus Levels and Cardiovascular Disease Risks in Egyptian Type 2 Diabetic Patients. Open Access Maced J Med Sci [Internet]. 2022 Mar. 25 [cited 2024 Apr. 25];10(A):502-13. Available from: https://oamjms.eu/index.php/mjms/article/view/8340