Formulation of Orally Disintegrating Tablets of Captopril as Superdisintegrant using Corncob (Zea mays L.)

Authors

  • Gabena Indrayani Dalimunthe Department of Pharmaceutical Technology, Faculty of Pharmacy, Universitas Muslim Nusantara Al Washliyah, Medan, Indonesia https://orcid.org/0000-0002-5198-1887
  • Samran Samran Department of Pharmaceutical Technology, Sekolah Tinggi Ilmu Kesehatan Indah Medan, Medan, Indonesia
  • Najarul Susanto Department of Pharmaceutical Technology, Faculty of Pharmacy, Universitas Muslim Nusantara Al Washliyah, Medan, Indonesia
  • Ridwanto Ridwanto Department of Pharmaceutical Technology, Faculty of Pharmacy, Universitas Muslim Nusantara Al Washliyah, Medan, Indonesia
  • Kasta Gurning Departement of Pharmacy, Sekolah Tinggi Ilmu Kesehatan Senior Medan, Medan, Indonesia

DOI:

https://doi.org/10.3889/oamjms.2022.8343

Keywords:

Avicel, Cellulose, Corncobs, Microcrystalline and ODT

Abstract

AIM: This study aimed to make corncobs the basic material for the manufacture of microcrystalline cellulose.

METHODS: Manufacture of corncob cellulose microcrystals (CCMs) by isolating alpha-cellulose from corncobs, then hydrolyzed with HCl 2.5 N. The yield of CCMs of 14.51% can be used as orally disintegrating tablet (ODT) and has similarities with Avicel as standard comparison.

RESULTS: Both organoleptic results were pH 5.6 and 6.54; drying shrinkage 3.33% and 4.39%; total ash content 0.17% and 0.02%; and water solubility 0.9% and 0.12%. Furthermore, the real specific gravity is 0.317 and 0.306 g/cm3, incompressible density is 0.379 and 0.375 g/cm3, the true density is 1.291 and 1.206 g/cm3, Hausner index is 1.195 and 1.225, compressibility index is 19.55 and 22.55%, and porosity is 75.5 and 74.6%.

CONCLUSION: Captopril ODT tablet preparations with CCM as filler have almost the exact tablet evaluation results compared to Avicel and to meet the requirements.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

Lau T, Harbourne N, Oruna-Cancha J. Valorisation of swwer corn (Zea mays) cob by extraction of valuable compounds. Int J Food Sci Technol. 2019;54(4):1240-6. DOI: https://doi.org/10.1111/ijfs.14092

Ashour A, Amer M, Marzouk A, Shimizu K, Kondo R, El-Sharkawy S. Corncobs as a potential source of functional chemicals. Molecules. 2013;18(11):13823-30. https://doi.org/10.3390/molecules181113823 PMid:24217325 DOI: https://doi.org/10.3390/molecules181113823

Suryanto E, Momuat LI, Yudistira A, Wehantouw F. The evaluation of singlet oxygen quenching and sunscreen activity of corncob extract. Indones J Pharm. 2013;24(4):267-76. https://doi.org/10.14499/indonesianjpharm24iss4pp2670

Isa I, Setiawati E, Mohammad E, Kunusa W. Ultilization of corncob cellulose isolate (Zea mays) as adsorbent of heavy metal copper and cadmium. IOP Conf Series Earth Environ Sci. 2020;589:1-10. https://doi.org/10.1088/1755-1315/589/1/012035 DOI: https://doi.org/10.1088/1755-1315/589/1/012035

Aprilia NA, Mulyati S, Alam PN, Razali N, Zuhra, Farmawati, et al. Preparation and characterization of sugarcane bagasse nanocellulose crystalline using acid hydrolysis with and without ultrasonication. Rasayan J Chem. 2021;14(1):601-7. https://doi.org/10.31788/rjc.2021.1415920 DOI: https://doi.org/10.31788/RJC.2021.1415920

Singh HK, Patil T, Vineeth SK, Das S, Pramani A, Mhaske ST. Isolation of microcrystalline cellulose from corn stover with emphasis on its constituents: Corn cover and corn cob. Mater Today. 2019;27(1):589-94. https://doi.org/10.1016/j.matpr.2019.12.065 DOI: https://doi.org/10.1016/j.matpr.2019.12.065

Shao X, Wang J, Liu Z, Hu N, Liu M, Xu Y. Preparation and characterization of porous microcrystalline cellulose from corncob. Ind Crops Prod. 2020;151:1-6. https://doi.org/10.1016/j.indcrop.2020.112457 DOI: https://doi.org/10.1016/j.indcrop.2020.112457

Abiaziem CV, Williams AB, Inegbenebor AI, Onwordi CT, Ehi- Eromosele CO, Petrik LF. Isolation and characterisation of cellulose nanocrystal obtained from sugarcane peel. Rasayan J Chem. 2020;13(1):177-87. https://doi.org/10.31788/RJC.2020.1315328 DOI: https://doi.org/10.31788/RJC.2020.1315328

Suesat J, Suwanruji P. Preperation and properties of microcrtstalline cellulose from corn residues. Adv Mater Rese. 2011;332-334:1781-4. https://doi.org/10.4028/www.scientific.net/AMR.332-334.1781 DOI: https://doi.org/10.4028/www.scientific.net/AMR.332-334.1781

Abbasi S, Yousefi G, Ansari AA, Mohammadi- Samani S. Formulation and in vitro evaluation of a fast-disintegrating/sustained dual release bucoadhesive bilayer tablet of captopril for treatment of hypertension crises. Res Pharm Sci. 2016;11(4):274-83. https://doi.org/10.4103/1735-5362.189284 DOI: https://doi.org/10.4103/1735-5362.189284

Ohwoavworhua FO, Adelakun TA. Non-wood fibre production of microcrystalline cellulose from sorghum caudatum: Characterisation and tableting properties. Indian J Pharm Sci. 2010;73(3):295-301. https://doi.org/10.4103/0250-474X.70473 DOI: https://doi.org/10.4103/0250-474X.70473

Zaky AA, Elewah HA. Design and optimization of captopril sublingual tablets: Enhancement of pharmacokinetic parameters in human. Az J Pharm Sci. 2016;53:90-107. DOI: https://doi.org/10.21608/ajps.2016.6889

Rojas J, Lopez A, Guisao S, Ortiz C. Evaluation of several microcrystalline celluloses obtained from agricultural by-products. J Adv Pharm Technol Res. 2011;2(3):144-50. https://doi.org/10.4103/2231-4040.85527 DOI: https://doi.org/10.4103/2231-4040.85527

Parfati N, Rani KC, Charles N, Geovanny V, Paramartha DP. Formulasi orally disintegrating tablet atenolol-β- siklodekstrin menggunakan Co-process superdisintegran crospovidone sodium starch glcolate. Med Pharm Indones. 2017;1(4):197-203. DOI: https://doi.org/10.24123/mpi.v1i4.771

Kelana AS, Kusuma AP, Indrati O. Formulation and evaluation of kaptopril tablets using threaded amylum tubes and HPMC as filters and binders of direct method. Eksakta. 2018;18(1):8-18. https://doi.org/10.20885/eksakta.vol18.iss1.art2 DOI: https://doi.org/10.20885/eksakta.vol18.iss1.art2

Fu Y, Seong HJ, Kimura S, Park K. Orally fast disintegrating tablets: Developments, technologies, taste-masking and clinical studies. Crit Rev Ther Drug Carrier Syst. 2004;21(6):433-76. https://doi.org/10.1615/critrevtherdrugcarriersyst.v21.i6.10 PMid:15658933 DOI: https://doi.org/10.1615/CritRevTherDrugCarrierSyst.v21.i6.10

Rani KC, Parfati N, Putri W. Formulation of orally disintegratin tablet atenol with sodium starch glycolate as superdisintegran. J Farmasi Komunitas. 2017;14(1):55-64. https://doi. org/10.24071/jpsc.141564 DOI: https://doi.org/10.24071/jpsc.141564

Downloads

Published

2022-01-26

How to Cite

1.
Dalimunthe GI, Samran S, Susanto N, Ridwanto R, Gurning K. Formulation of Orally Disintegrating Tablets of Captopril as Superdisintegrant using Corncob (Zea mays L.). Open Access Maced J Med Sci [Internet]. 2022 Jan. 26 [cited 2024 Nov. 5];10(A):278-82. Available from: https://oamjms.eu/index.php/mjms/article/view/8343

Similar Articles

You may also start an advanced similarity search for this article.