The Validity of Carotid Doppler Peak Velocity and Inferior Vena Cava Collapsibility Index in Identifying the Fluid Responders in Mechanically Ventilated Septic Shock Patients

Authors

DOI:

https://doi.org/10.3889/oamjms.2022.8375

Keywords:

Septic shock, Fluid responsiveness, Mechanical ventilation, Carotid Doppler peak velocity, Respiratory variation in inferior vena cava diameter, Central venous pressure

Abstract

Introduction: Measures of carotid artery flow or inferior vena cava diameter were recently shown to predict fluid responsiveness. Both are relatively superficial large vessels which can provide straightforward ultrasound evaluation & high-qualityimages.Methods: Our study is a prospective observational study on 30 mechanically ventilated septic shock patients in ICUto assess the fluid responsivenessby measuring carotid Doppler peak velocity&respiratory variation in inferior vena cava diameter against the increase in the cardiac index by echocardiographic calculations as a reference. All patients were given a fluid bolus 7 ml/ Kg crystalloid solution within 30 minutes, static and dynamic indices which include CVP, MAP, pulse pressure, difference between diameter of IVC during inspiration and expiration (ΔIVC- d) & carotid Doppler peak velocity in a single respiratory cycle (ΔCDPV) were measured before (T0) & after (T1). Vasoactive drugs infusion rate and ventilation settings did not changed during follow up. Patients were categorized either fluid responders “R” or non-responders “NR” according to an increase in cardiac output “CO” (increase in CO > 15 %.Results: Comparing responders & Non responders group we found a significant difference in Cardiac output measures,MAP & Δ CDPV pre & post fluid boluses as (5.26±4.42 L/min Vs. 10.62±5.73 L/min, 69.48±9.70 mmHg Vs. 84.90±10.36 mmHg&24.43±11.87%Vs33.22±11.00%) respectively with P-value (0.007, 0.05&0.01) respectively, on the other side , ΔD-IVC & Δ CVP pre & post fluid boluses didn’t show any statistical difference as (11.91±9.41 % Vs. 13.51±9.56 %, 5.86±5.22 cmH2O Vs 7.22±4.82 cmH2O) with P-value (0.87&0.68)respectively.Δ CDPV increase in response to increased intravascular volume in R group showed sensitivity 81%, specificity 66.7%. APACHE II, SOFA day 0,5 didn’t showed any difference between the R & NR group (16.05±3.23 Vs 18.44±3.81, 11.48±2.82Vs12.11±2.80& 12.95±3.68Vs12.56±3.97) respectively with P-value (0.164,  0.625 & 0.79) respectively. Conclusion: ΔCDPV was a more precise & even easier assessment tool with better sensitivity and specificity for evaluation of fluid responsiveness than the ΔD-IVC in patients with septic shock upon mechanicalventilation. Also, ΔCDPV has a high correlation with SVI increasing parameters assessed by echocardiography after fluid boluses. On the other hand and in comparison, CVP showed low accuracy in predicting fluid responsiveness.

 

 

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

Levy MM, Evans LE, Rhodes A. The surviving sepsis campaign bundle: 2018 update. Intens Care Med. 2018;44(6):925-8. https://doi.org/10.1007/s00134-018-5085-0 PMid:29675566 DOI: https://doi.org/10.1007/s00134-018-5085-0

Leisman DE, Doerfler ME, Ward MF, Masick KD, Wie BJ, Gribben JL. Survival benefit and cost savings from compliance with a simplified 3-hour sepsis bundle in a series of prospective, multisite, observational cohorts. Crit Care Med. 2017;45(3):395-406. https://doi.org/10.1097/CCM.0000000000002184 PMid:27941371 DOI: https://doi.org/10.1097/CCM.0000000000002184

Wiesenack C, Fiegl C, Keyser A, Prasser C, Keyl C. Assessment of fluid responsiveness in mechanically ventilated cardiac surgical patients. Eur J Anaesthesiol. 2005;22(9):658-65. https://doi.org/10.1017/s0265021505001092 PMid:16163911 DOI: https://doi.org/10.1017/S0265021505001092

Slama M, Masson H, Teboul JL, Arnould ML, Nait-Kaoudjt R, Colas B, et al. Monitoring of respiratory variations of aortic blood flow velocity using esophageal Doppler. Intens Care Med. 2004;30(6):1182-7. https://doi.org/10.1007/s00134-004-2190-z PMid:15004667 DOI: https://doi.org/10.1007/s00134-004-2190-z

Liu V, Morehouse JW, Soule J, Whippy A, Escobar GJ. Fluid volume, lactate values, and mortality in sepsis patients with intermediate lactate values. Ann Am Thorac Soc. 2013;10:466-73. https://doi.org/10.1513/AnnalsATS.201304-099OC PMid:24004068 DOI: https://doi.org/10.1513/AnnalsATS.201304-099OC

Vandervelden S, Malbrain ML. Initial resuscitation from severe sepsis: One size does not fit all. Anaesthesiol Intens Ther. 2015;47:44-55. https://doi.org/10.5603/AIT.a2015.0075 PMid:26578400 DOI: https://doi.org/10.5603/AIT.a2015.0075

Seymour CW, Gesten F, Prescott HC, Friedrich ME, Iwashyna TJ, Phillips GS, et al. Time to treatment and mortality during mandated emergency care for sepsis. N Engl J Med. 2017;376(23):2235-44. https://doi.org/10.1056/NEJMoa1703058 DOI: https://doi.org/10.1056/NEJMoa1703058

Smith JS. Current recommendations for diagnosis and management of sepsis and septic shock. J Am Acad PAs. 2013;26(10):42-5. https://doi.org/10.1097/01.JAA.0000435007.55340.07 PMid:24201922 DOI: https://doi.org/10.1097/01.JAA.0000435007.55340.07

Mallat J, Meddour M, Durville E, Lemyze M, Pepy F, Temime J, et al. Decrease in pulse pressure and stroke volume variations after mini-fluid challenge accurately predicts fluid responsiveness. Br J Anaesth. 2015;115(3):449-56. https://doi.org/10.1093/bja/aev222 PMid:26152341 DOI: https://doi.org/10.1093/bja/aev222

Lammi MR, Aiello B, Burg GT, Rehman T, Douglas IS, Wheeler AP, et al. Response to fluid boluses in the fluid and catheter treatment trial. Chest. 2015;148(4):919-26. https://doi.org/10.1378/chest.15-0445 PMid:26020673 DOI: https://doi.org/10.1378/chest.15-0445

Chen C, Kollef MH. Conservative fluid therapy in septic shock: An example of targeted therapeutic minimization. Crit Care. 2014;18(4): 481. https://doi.org/10.1186/s13054-014-0481-5 PMid:25185073 DOI: https://doi.org/10.1186/s13054-014-0481-5

Pinsky MR, Teboul JL. Assessment of indices of preload and volume responsiveness. Curr Opin Crit Care. 2005;11(3):235-9. https://doi.org/10.1097/01.ccx.0000158848.56107.b1 PMid:15928472 DOI: https://doi.org/10.1097/01.ccx.0000158848.56107.b1

Michard F. Changes in arterial pressure during mechanical ventilation. Anesthesiology. 2005;103(2):419-28. https://doi.org/10.1097/00000542-200508000-00026 PMid:16052125 DOI: https://doi.org/10.1097/00000542-200508000-00026

Ibarra-Estrada MA, López-Pulgarín JA, Mijangos-Méndez JC, Díaz-Gómez JL, Aguirre-Avalos G. Respiratory variation in carotid peak systolic velocity predicts volume responsiveness in mechanically ventilated patients with septic shock: A prospective cohort study. Crit Ultrasound J. 2015;7(1):12. https://doi.org/10.1186/s13089-015-0029-1 PMid:26123610 DOI: https://doi.org/10.1186/s13089-015-0029-1

Dinh VA, Ko HS, Rao R, Bansal RC, Smith DD, Kim TE, et al. Measuring cardiac index with a focused cardiac ultrasound examination in the ED. Am J Emerg Med. 2012;30(9):1845-51. https://doi.org/10.1016/j.ajem.2012.03.025 PMid:22795411 DOI: https://doi.org/10.1016/j.ajem.2012.03.025

Zhu W, Wan L, Wan X, Wang G, Su M, Liao G, et al. Measurement of brachial artery velocity variation and inferior vena cava variability to estimate fluid responsiveness. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue. 2016;28(8):713-7. https://doi.org/10.3760/cma.j.issn.2095-4352.2016.08.009 PMid:27434562

García MI, Cano AG, Monrové JC. Brachial artery peak velocity variation to predict fluid responsiveness in mechanically ventilated patients. Crit Care. 2009;13(5):R142. https://doi.org/10.1186/cc8027 PMid:19728876 DOI: https://doi.org/10.1186/cc8027

Caillard A, Gayat E, Tantot A, Dubreuil G, M’Bakulu E, Madadaki C. Comparison of cardiac output measured by oesophageal Doppler ultrasonography or pulse pressure contour wave analysis. Br J Anaesth. 2015;114(6):893-900. https://doi.org/10.1093/bja/aev001 PMid:25735709 DOI: https://doi.org/10.1093/bja/aev001

Varas JL, Díaz CM, Blancas R, Gonzalez OM, Ruiz BL, Montero RM, et al. Inferior vena cava distensibility index predicting fluid responsiveness in ventilated patients. Intens Care Med Exp. 2015;3(Suppl 1):A600. https://doi.org/10.1186/2197-425X-3-S1-A600 DOI: https://doi.org/10.1186/2197-425X-3-S1-A600

Otto CM, Pearlman AS, Gardner CL, Enomoto DM, Togo T, Tsuboi H, et al. Experimental validation of Doppler echocardiographic measurement of volume flow through the stenotic aortic valve. Circulation. 1988;78:435-41. https://doi.org/10.1161/01.cir.78.2.435 DOI: https://doi.org/10.1161/01.CIR.78.2.435

Chan Y. Biostatistics 102: Quantitative data-parametric and non-parametric tests. Blood Pressure. 2003;140:79. PMid:14700417

Chan Y. Biostatistics 103: Qualitative data-tests of independence. Singapore Med J. 2003;44(10):498-503. PMid:15024452

Chan Y. Biostatistics 104: Correlational analysis. Singapore Med J. 2003;44(12):614-9. PMid:14770254

Vignon P, Repessé X, Bégot E, Léger J, Jacob C, Bouferrache K, et al. Comparison of echocardiographic indices used to predict fluid responsiveness in ventilated patients. Am J Respir Crit Care Med. 2017;195(8):1022-32. https://doi.org/10.1164/rccm.201604-0844OC DOI: https://doi.org/10.1164/rccm.201604-0844OC

De Backer D, Fagnoul D. Intensive care ultrasound: VI. Fluid responsiveness and shock assessment. Ann Am Thorac Soc. 2014;11(1):129-36. https://doi.org/10.1513/AnnalsATS.201309-320OT PMid:24460447 DOI: https://doi.org/10.1513/AnnalsATS.201309-320OT

Feissel M, Michard F, Mangin I, Ruyer O, Faller J, Teboul J. Respiratory changes in aortic blood velocity as an indicator of fluid responsiveness in ventilated patients with septic shock. Chest. 2001;119(3):867-73. https://doi.org/10.1378/chest.119.3.867 PMid:11243970 DOI: https://doi.org/10.1378/chest.119.3.867

Song Y, Kwak Y, Song J, Kim Y, Shim J. Respirophasic carotid artery peak velocity variation as a predictor of fluid responsiveness in mechanically ventilated patients with coronary artery disease. Br J Anaesth. 2014;113(1):61-6. https://doi.org/10.1093/bja/aeu057 PMid:24722322 DOI: https://doi.org/10.1093/bja/aeu057

Lu N, Xi X, Jiang L, Yang D, Yin K. Exploring the best predictors of fluid responsiveness in patients with septic shock. Am J Emerg Med. 2017;35(9):1258-61. https://doi.org/10.1016/j.ajem.2017.03.052 PMid:28363617 DOI: https://doi.org/10.1016/j.ajem.2017.03.052

Bentzer P, Griesdale DE, Boyd J, MacLean K, Sirounis D, Ayas NT. Will this hemodynamically unstable patient respond to a bolus of intravenous fluids? JAMA. 2016;316(12):1298-309. https://doi.org/10.1001/jama.2016.12310 PMid:27673307 DOI: https://doi.org/10.1001/jama.2016.12310

Muller L, Bobbia X, Toumi M, Louart G, Molinari N, Ragonnet B, et al. Respiratory variations of inferior vena cava diameter to predict fluid responsiveness in spontaneously breathing patients with acute circulatory failure: Need for a cautious use. Crit Care. 2012;16(5):R188. https://doi.org/10.1186/cc11672 DOI: https://doi.org/10.1186/cc11672

Barbier C, Loubières Y, Schmit C, Hayon J, Ricôme JL, Jardin F, et al. Respiratory changes in inferior vena cava diameter are helpful in predicting fluid responsiveness in ventilated septic patients. Intens Care Med. 2004;30(9):1740-6. https://doi.org/10.1007/s00134-004-2259-8 PMid:15034650 DOI: https://doi.org/10.1007/s00134-004-2259-8

Charbonneau H, Riu B, Faron M, Mari A, Kurrek MM, Ruiz J, et al. Predicting preload responsiveness using simultaneous recordings of inferior and superior vena cavae diameters. Crit Care. 2014;18(5):473. https://doi.org/10.1186/s13054-014-0473-5 PMid:25189403 DOI: https://doi.org/10.1186/s13054-014-0473-5

Downloads

Published

2022-02-15

How to Cite

1.
Soliman M, Magdi A, Fatthy M, El-Sherif R. The Validity of Carotid Doppler Peak Velocity and Inferior Vena Cava Collapsibility Index in Identifying the Fluid Responders in Mechanically Ventilated Septic Shock Patients. Open Access Maced J Med Sci [Internet]. 2022 Feb. 15 [cited 2024 Apr. 26];10(B):383-8. Available from: https://oamjms.eu/index.php/mjms/article/view/8375