Wet Cupping’s Effect on Nitric Oxide Levels in Hypertensive Patients

Authors

  • Sharlini Desfika Master Program in Biomedical Sciences, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia; Department of Physiology, Faculty of Medicine, Universitas Muhammadiyah Sumatera Utara, Medan, Indonesia
  • Muhammad Ichwan Master Program in Biomedical Sciences https://orcid.org/0000-0001-8380-9099
  • Dedi Ardinata Master Program in Biomedical Sciences, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia; Department of Physiology, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia https://orcid.org/0000-0002-7214-4295

DOI:

https://doi.org/10.3889/oamjms.2022.8415

Keywords:

Wet cupping, Nitric oxide, Blood pressure

Abstract

BACKGROUND: Wet cupping is a non-pharmacological therapy that has been shown to assist hypertensive patients with blood pressure reduction. However, the underlying mechanisms by which wet-cupping lowers blood pressure are currently unknown. More scientific investigation is necessary to explain the mechanism by which wet cupping lowers blood pressure, particularly the role of nitric oxide (NO).

AIM: The study aimed to show the effect of wet cupping on NO levels in hypertensive patients.

METHODS: A pre-experimental study using a single group pre-test and post-test design to monitor changes in blood NO levels and blood pressure in 45 hypertensive patients in Medan after 4 weeks of wet cupping therapy. The patients’ blood NO levels, as well as their systolic and diastolic blood pressures (SBP and DBP), were measured before and after 4 weeks of wet cupping.

RESULTS: After 4 weeks of wet cupping, blood NO levels significantly increased (0.00704 mol/mL, p=0.039), while SBP and DBP levels significantly decreased (12.644 mmHg and 7.111 mmHg, respectively, p<0.001). However, there was no correlation between increased blood NO levels and reductions in SBP and DBP (p=0.468 and p=0.299, respectively).

CONCLUSION: This study found that after 4 weeks of cupping therapy, the decrease in SBP and DBP was not accompanied by an increase in blood NO levels.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

Guideline for the Pharmacological Treatment of Hypertension in Adults. Geneva: World Health Organization; 2021.

The Ministry of Health of the Republic of Indonesia. Riskesdas 2018 Report. Jakarta: Research and Development Agency, Ministry of Health; 2019.

Hall ME, Hall JE. Pathogenesis of hypertension. In: Bakris GL, Sorrentino MJ, editoes. Hypertension: A Companion to Braunwald’s Heart Disease. 3rd ed. Netherlands: Elsevier; 2018. p. 33-51. https://doi.org/10.1016/B978-0-323-42973-3.00005-6 DOI: https://doi.org/10.1016/B978-0-323-42973-3.00005-6

Mahmood S, Shah KU, Khan TM, Nawaz S, Rashid H, Baqar SW, et al. Non-pharmacological management of hypertension: In the light of current research. Irish J Med Sci. 2019;188(2):437-52. https://doi.org/10.1007/s11845-018-1889-8 PMid:30136222 DOI: https://doi.org/10.1007/s11845-018-1889-8

Wang J, Xiong X. Evidence-based Chinese medicine for hypertension. Evid Based Complement Alternat Med. 2013;2013:978398. https://doi.org/10.1155/2013/978398 PMid:23861720 DOI: https://doi.org/10.1155/2013/978398

Ahmed SM, Madbouly NH, Maklad SS, Abu-Shady EA. Immunomodulatory effects of blood letting cupping therapy in patients with rheumatoid arthritis. Egypt J Immunol. 2005;12(2):39-51. PMid:17977209

Ahmadi A, Schwebel DC, Rezaei M. The efficacy of wet-cupping in the treatment of tension and migraine headache. Am J Chin Med. 2008;36(1):37-44. https://doi.org/10.1142/S0192415X08005564 PMid:18306448 DOI: https://doi.org/10.1142/S0192415X08005564

Cao H, Hu H, Colagiuri B, Liu J. Medicinal cupping therapy in 30 patients with fibromyalgia: A case series observation. Forschende Komplementarmedizin. 2011;18(3):122-6. https://doi.org/10.1159/000329329 PMid:21701180 DOI: https://doi.org/10.1159/000329329

Zarei M, Hejazi S, Javadi SA, Farahani H. The efficacy of wet cupping in treatment of hypertension. Arya Atherosc. 2012;8:316.

Aleyeidi NA, Aseri KS, Matbouli SM, Sulaiamani AA, Kobeisy SA. Effects of wet-cupping on blood pressure in hypertensive patients: A randomized controlled trial. J Integ Med. 2015;13(6):391-9. https://doi.org/10.1016/S2095-4964(15)60197-2 PMid:26559364 DOI: https://doi.org/10.1016/S2095-4964(15)60197-2

Fadli F, Ahmad A, Baharuddin R, Februanti S. Effect of wet cupping against increased arterial baroreflex sensitivity in hypertensive patients: Randomized controlled trial (RCT). J Crit Rev. 2020;7:671-6. http://doi.org/10.31838/jcr.07.14.118 DOI: https://doi.org/10.31838/jcr.07.14.118

Víteček J, Lojek A, Valacchi G, Kubala L. Arginine-based inhibitors of nitric oxide synthase: Therapeutic potential and challenges. Mediators Inflamm. 2012;2012:318087. https://doi.org/10.1155/2012/318087 PMid:22988346 DOI: https://doi.org/10.1155/2012/318087

Ahmad A, Dempsey SK, Daneva Z, Azam M, Li N, Li P, et al. Role of nitric oxide in the cardiovascular and renal systems. Int J Mol Sci. 2018;19(9):2605. https://doi.org/10.3390%2Fijms19092605 PMid:30177600 DOI: https://doi.org/10.3390/ijms19092605

Rajapakse NW, Mattson DL. Role of cellular L-arginine uptake and nitric oxide production on renal blood flow and arterial pressure regulation. Curr Opin Nephrol Hypertension. 2013;22(1):45-50. https://doi.org/10.1097/MNH.0b013e32835a6ff7 PMid:23095292 DOI: https://doi.org/10.1097/MNH.0b013e32835a6ff7

Kumar R, Kohli S, Mishra A, Garg R, Alam P, Stobdan T, et al. Interactions between the genes of vasodilatation pathways influence blood pressure and nitric oxide level in hypertension. Am J Hypertension. 2014;28(2):239-47. https://doi.org/10.1093/ajh/hpu130 PMid:25159081 DOI: https://doi.org/10.1093/ajh/hpu130

Aflyatumova GN, Nigmatullina RR, Sadykova DI, Chibireva MD, Fugetto F, Serra R. Endothelin-1, nitric oxide, serotonin and high blood pressure in male adolescents. Vasc Health Risk Manage. 2018;14:213-23. https://doi.org/10.2147/vhrm.s170317 PMid:30271160 DOI: https://doi.org/10.2147/VHRM.S170317

Franz F, Erdfelder E, Lang AG, Buchner A. G*Power 3.1 (manual): A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods. 2007;39(2):175-91. https://doi.org/10.3758/bf03193146 PMid:17695343 DOI: https://doi.org/10.3758/BF03193146

Al-Bedah AM, Elsubai IS, Qureshi NA, Aboushanab TS, Ali GI, Elolemy AT, et al. The medical perspective of cupping therapy: Effects and mechanisms of action. J Tradit Complement Med. 2018;9(2):90-7. https://doi.org/10.1016/j.jtcme.2018.03.003 PMid:30963043 DOI: https://doi.org/10.1016/j.jtcme.2018.03.003

Ma SX. Enhanced nitric oxide concentrations and expression of nitric oxide synthase in acupuncture points/meridians. J Alternat Complement Med. 2003;9(2):207-15. https://doi.org/10.1089/10755530360623329 PMid:12804074 DOI: https://doi.org/10.1089/10755530360623329

Frank S, Kämpfer H, Wetzler C, Pfeilschifter J. Nitric oxide drives skin repair: Novel functions of an established mediator. Kidney Int. 2002;61(3):882-8. https://doi.org/10.1046/j.1523-1755.2002.00237.x PMid:11849442 DOI: https://doi.org/10.1046/j.1523-1755.2002.00237.x

Luo J, Chen AF. Nitric oxide: A newly discovered function on wound healing. Acta Pharmacol Sin. 2005;26(3):259-64. https://doi.org/10.1111/j.1745-7254.2005.00058.x PMid:15715920 DOI: https://doi.org/10.1111/j.1745-7254.2005.00058.x

Tagil SM, Celik HT, Ciftci S, Kazanci FH, Arslan M, Erdamar N, et al. Wet-cupping removes oxidants and decreases oxidative stress. Complement Ther Med. 2014;22(6):1032-6. https://doi.org/10.1016/j.ctim.2014.10.008 PMid:25453524 DOI: https://doi.org/10.1016/j.ctim.2014.10.008

El Sayed SM, Mahmoud HS, Nabo MM. Medical and scientific bases of wet cupping therapy (Al-hijamah): In light of modern medicine and prophetic medicine. Alternat Integ Med. 2013;2(5):1-16. http://doi.org/10.4172/2327-5162.1000111 DOI: https://doi.org/10.4172/2327-5162.1000122

Abdel Ghafar MT. An overview of the classical and tissue-derived renin-angiotensin-aldosterone system and its genetic polymorphisms in essential hypertension. Steroids. 2020;163:108701. https://doi.org/10.1016/j.steroids.2020.108701 PMid:32717198 DOI: https://doi.org/10.1016/j.steroids.2020.108701

Rubattu S, Forte M, Marchitti S, Volpe M. Molecular implications of natriuretic peptides in the protection from hypertension and target organ damage development. Int J Mol Sci. 2019;20(4):798. https://doi.org/10.3390/ijms20040798 PMid:30781751 DOI: https://doi.org/10.3390/ijms20040798

Tomiyama H, Ishizu T, Kohro T, Matsumoto C, Higashi Y, Takase B, et al. Longitudinal association among endothelial function, arterial stiffness and subclinical organ damage in hypertension. Int J Cardiol. 2018;253:161-6. https://doi.org/10.1016/j.ijcard.2017.11.022 PMid:29174285 DOI: https://doi.org/10.1016/j.ijcard.2017.11.022

Manta E, Konstantinidis D, Dimitriadis K, Tatakis F, Drogkaris S, Polyzos D, et al. Correlations between sympathetic nervous system activity and smoking, as well as unattended blood pressure in essential hypertension. Eur Heart J. 2021;42:2599. https://doi.org/10.1093/eurheartj/ehab724.2599 DOI: https://doi.org/10.1093/eurheartj/ehab724.2599

Caillon A, Paradis P, Schiffrin EL. Role of immune cells in hypertension. Br J Pharmacol. 2019;176(12):1818-28. https://doi.org/10.1111/bph.14427 PMid:29952002 DOI: https://doi.org/10.1111/bph.14427

Li C, Chang Q, Zhang J, Chai W. Effects of slow breathing rate on heart rate variability and arterial baroreflex sensitivity in essential hypertension. Medicine. 2018;97(18):e0639. https://doi.org/10.1097%2FMD.0000000000010639 PMid:29718876 DOI: https://doi.org/10.1097/MD.0000000000010639

Downloads

Published

2022-01-26

How to Cite

1.
Desfika S, Ichwan M, Ardinata D. Wet Cupping’s Effect on Nitric Oxide Levels in Hypertensive Patients. Open Access Maced J Med Sci [Internet]. 2022 Jan. 26 [cited 2024 Nov. 21];10(A):214-9. Available from: https://oamjms.eu/index.php/mjms/article/view/8415

Issue

Section

Pathophysiology

Categories