Application of Chitosan and Hydroxyapatite in Periodontal Tissue Regeneration: A Review
DOI:
https://doi.org/10.3889/oamjms.2022.8423Keywords:
Chitosan, Hydroxyapatite, Periodontal regeneration, GraftAbstract
Chronic periodontitis is an infection caused by bacteria in the gum tissue that supports the teeth. The current periodontal therapy manages or removes periodontal infections and repairs the periodontium destroyed due to periodontal disease. Due to its biodegradability and biocompatibility, chitosan (CH) and hydroxyapatite (HAP) are employed for bone tissue healing. The purpose of this study was to compare the utilization of CH and HAP in the regeneration of periodontal tissue. The presented study is a systematic review prepared from a collection of recent relevant published articles. This research was conducted by reviewing articles from 2016 to August 2021. The analysis found that CH/HAP is a therapeutic strategy for chronic periodontitis patients that allow low-cost bone regeneration, mHA/CH scaffolds may inhibit the growth of periodontal pathogens, and CH or HAP has the potential to be developed bone tissue engineering.
Downloads
Metrics
Plum Analytics Artifact Widget Block
References
Philstrom B, Michalowicz B, Johnson N. Periodontal diseases. Lancet 2005;366:1809. https://doi.org/10.1016/S0140-6736(05)67728-8 DOI: https://doi.org/10.1016/S0140-6736(05)67728-8
Nakashima M, Reddi A. The application of bone morphogenetic proteins to dental tissue engineering. Nat Biotechnol. 2003;21:1025. https://doi.org/10.1038/nbt864 PMid:12949568 DOI: https://doi.org/10.1038/nbt864
Putri FR, Tasminatun S. Effectiveness of chitosan ointment on healing chemical burns in Rattus norvegicus. Pearl Med. 2012;12(1):24-30. https://doi.org/10.1016/j.burns.2005.10.015 PMid:16527411 DOI: https://doi.org/10.1016/j.burns.2005.10.015
Sarwono R. Utilization of chitin/chitosan as an antimicrobial agent. JKTI. 2010;12(1):32-8.
Bano I, Arshad M, Yasin T, Ghauri MA, Younus M. Chitosan: A potential biopolymer for wound management. Int J Biol Macromol. 2017;102(1):380-3. https://doi.org/10.1016/j.ijbiomac.2017.04.047 PMid:28412341 DOI: https://doi.org/10.1016/j.ijbiomac.2017.04.047
Kantharia N, Naik S, Apte S, Kheur M, Kheur S, Kale B. Nanohydroxyapatite and its contemporary applications. J Dent Res Sci Dev. 2014;1:15-9. DOI: https://doi.org/10.4103/2348-3407.126135
Kattimani VS, Chakravarthi PS, Kanumuru NR, Subbarao VV, Sidharthan A, Kumar TS. Eggshell derived hydroxyapatite as bone graft substitute in the healing of maxillary cystic bone defects: A preliminary report. J Int Oral Health. 2014;6(3):15-9. PMid:25083027
Tabata Y. Tissue Regeneration Based on Drug Delivery Technology, Institute for Frontier Medical Sciences. Japan: Kyoto University; 2003.
Bauer TW, Muschler GF. Bone graft materials: An overview of the basic science. Clin Orthop Relat Res. 2000;371:10-27. PMid:10693546 DOI: https://doi.org/10.1097/00003086-200002000-00003
Torres J, Tamimi F, Alkhraisat M, Frutos JP, Cabarcos EL. Bone subtitutes. J Implant Dent. 2011;28:91-108. DOI: https://doi.org/10.5772/17329
Boynuegri D. Clinical and radiographic evaluations of chitosan gel in periodontal intraosseous defects: A pilot study. J Biomed Mater Res Part B Appl Biomater. 2009;90:461-6. https://doi.org/10.1002/jbm.b.31307 PMid:19145627
Dahlan A, Hidayati HE, Hardianti SP. Collagen fiber increase due to hydroxyapatite from crab shells (Portunus pelagicus) application in post tooth extraction in Wistar rats. Eurasia J Biosci. 2020;14:3785-9.
Mukherjee DP, Tunkle AS, Roberts RA, Clavenna A, Rogers S, Smith D. Animal evaluation of chitosan glutamate paste and hydroxyapatite as synthetic bone graft materials. J Biomed Mater Res B Appl Biomater. 2003;67:603-9. https://doi.org/10.1002/jbm.b.10050 PMid:14528457 DOI: https://doi.org/10.1002/jbm.b.10050
Duan B, Shou K, Su X, Niu Y, Zheng G, Huang Y, et al. Hierarchical Microspheres Constructed from Chitin Nanofibers Penetrated Hydroxyapatite Crystals for Bone Regeneration. Washington, DC: Biomacromolecules American Chemical Society; 2003.
Cornejo FV, Reyes HM, Jimenez MR, Sergio H, Liamas RA. Dueñas Jiménez JM, (2017). Pilot study using a chitosanhydroxyapatite implant for guided alveolar bone growth in patients with chronic periodontitis. J Funct Biomater. 2017;8:29. https://doi.org/10.3390/jfb8030029 PMid:28753925 DOI: https://doi.org/10.3390/jfb8030029
Shavandi A, Bekhit AE, Sun Z, Ali MA. Bio-scaffolds produced from irradiated squid pen and crab chitosan and hydoxyapatite for bone-tissue engineering. Int J Biol Macromol. 2016;93:1446-56. https://doi.org/10.1016/j.ijbiomac.2016.04.046 PMid:27126171 DOI: https://doi.org/10.1016/j.ijbiomac.2016.04.046
Liao Y, Li H, Shu R, Chen H, Zhao L, Song Z, et al. Mesoporous hydroxyapatite/chitosan loaded with recombinant-human amelogenin could enhance antibacterial effect and promote periodontal regeneration. Front Cells Infect Microbiol. 2020;10:180. https://doi.org/10.3389/fcimb.2020.00180 PMid:32411618 DOI: https://doi.org/10.3389/fcimb.2020.00180
Jayash SN, Hashim NM, Misran M, Baharuddin NA. Formulation and in vitro and in vivo evaluation of a new osteoprotegerinchitosan gel for bone tissue regeneration. J Biomed Mater Res. 2016;105(2):398-407. https://doi.org/10.1002/jbm.a.35919 PMid:27684563 DOI: https://doi.org/10.1002/jbm.a.35919
Kamadjaja MJ, Abraham JF, Laksono H. Biocompatibility of Portunus pelagicus hydroxyapatite graft on human gingival fibroblast cell culture. Med Arch. 2019;73(6):378-81. https://doi.org/10.5455/medarh.2019.73.303-306 PMid:31819301 DOI: https://doi.org/10.5455/medarh.2019.73.378-381
Xiong L, Zeng J, Yao A, Tu Q, Li J, Yan L, et al. BMP2 loaded hollow hydroxyapatite microspheres exhibit enhanced osteoinduction and osteogenicity in large bone defects. Int J Nanomed. 2015;10:517-26. https://doi.org/10.2147/IJN.S74677 PMid:25609957 DOI: https://doi.org/10.2147/IJN.S74677
Cholas R, Padmanabhan SK, Gervaso F, Udayan G, Monaco G, Sannino A, et al. Scaffolds for bone regeneration made of hydroxyapatite microspheres in a collagen matrix. Mater Sci Eng C Mater Biol App. 2016;63:499-505. https://doi.org/10.1016/j.msec.2016.03.022 PMid:27040244 DOI: https://doi.org/10.1016/j.msec.2016.03.022
Ou Q, Miao Y, Yang F, Lin X, Zhang LM, Wang Y. Zein/gelatin/nanohydroxyapatite nanofibrous scaffolds are biocompatible and promote osteogenic differentiation of human periodontal ligament stem cells. Biomater Sci. 2019;7:1973-83. https://doi.org/10.1039/C8BM01653D DOI: https://doi.org/10.1039/C8BM01653D
Ali A, Ahmed S. A review on chitosan and its nanocomposites in drug delivery. Int J Biol Macromole. 2017;109:273-86. https://doi.org/10.1016/j.ijbiomac.2017.12.078 PMid:29248555 DOI: https://doi.org/10.1016/j.ijbiomac.2017.12.078
Boynuegri D. Clinical and radiographic evaluations of chitosan gel in periodontal intraosseous defects: A pilot study. J Biomed Mater Res Part B Appl Biomater. 2009;90:461-6. https://doi.org/10.1002/jbm.b.31307 PMid:19145627 DOI: https://doi.org/10.1002/jbm.b.31307
Hoemann CD, Sun J, Légaré A, McKee MD, Buschmann MD. Cartilage tissue engineering using an injectable chitosan-based cell delivery vehicle and adhesive. Osteoarthritis Cartilage. 2005;13:318-29. https://doi.org/10.1016/j.joca.2004.12.001 PMid:15780645 DOI: https://doi.org/10.1016/j.joca.2004.12.001
Bosshardt DD, Stadlinger B, Terheyden H. Cell-to-cell communication periodontal regeneration. Clin Oral Implants Res. 2015;26:229-39. https://doi.org/10.1111/clr.12543 PMid:25639287 DOI: https://doi.org/10.1111/clr.12543
Downloads
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2022 Asdar Gani, Risfah Yulianti, Supiaty Supiaty, Machirah Rusdy (Author)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
http://creativecommons.org/licenses/by-nc/4.0