Expression of Podoplanin in Hepatocellular Carcinoma in a Sample of Egyptian Population – Immunohistopathological Study

Authors

  • Samar Amer Department of Pathology, Faculty of Medicine, Cairo University, Giza, Egypt https://orcid.org/0000-0002-4241-7053
  • Menna Nabil Department of Pathology, National Hepatology and Tropical Medicine Research Institute, Cairo, Egypt
  • Mohamed Negm Department of Pathology, Faculty of Medicine, Cairo University, Giza, Egypt https://orcid.org/0000-0002-6889-8086

DOI:

https://doi.org/10.3889/oamjms.2022.8460

Keywords:

Podoplanin, Cancer associated fibroblasts, Malignant hepatocytes

Abstract

BACKGROUND: Hepatocellular carcinoma (HCC) is a highly incident malignancy with a dreadful prognosis. It evolves through a multistep process, with a contribution from different stromal cells like cancer associated fibroblasts. Podoplanin is a glycoprotein that influences epithelial mesenchymal interplay facilitating the tumor invasion.

AIM: The aim of the study was to evaluate the immunohistochemical expression of Podoplanin in HCC in cancer associated fibroblasts (CAFs) and malignant hepatocytes as well as assessing the lymphovascular density, and correlating them with the clinicopathological parameters.

METHODS: Sixty formalin-fixed paraffin-embedded HCC tissue blocks were retrieved from the pathology Department of the National Hepatology and Tropical Medicine Research Institute and Kasr Al-aini Hospital during the period of January 2012 till December 2019. The specimens were obtained through partial or total hepatectomy inclusion criteria included HCC cases obtained through resection type biopsy and those having no history of pre-operative cancer therapy, while cases with insufficient data, core biopsy, and marked necrosis were excluded from the study. Tumor tissue blocks were immunostained for Podoplanin and its expression was interpreted in lymphatic vessels, CAFs, and malignant hepatocytes.

RESULTS: Podoplanin expression in CAFs and malignant hepatocytes was detected in the majority of HCC cases (81.7%) and (88.3%), respectively. The malignant hepatocytes showed increased expression of Grade 1 immunostaining (36.7%). High lymphovascular density was detected over the majority of the cases (73.3%). Podoplanin expression was significantly correlated with higher mean age, male gender, presence of viral infection, cirrhosis, and higher tumor grade. Unifocal tumor mass, tumor size <5 cm, and presence of invasion showed a significant correlation with Podoplanin in malignant hepatocytes and CAFs for the formers and the later, respectively.

CONCLUSION: Podoplanin is highly expressed in HCC, which could be used as a prognostic marker for lymphangiogenesis. Furthermore, within the malignant hepatocytes and CAFs suggesting a role in hepatocellular tumorigenesis. Podoplanin targeted therapy can be investigated to slow down the tumor progression and metastasis.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

Boucher E, Forner A, Reig M, Bruix J. New drugs for the treatment of hepatocellular carcinoma. Liver Int. 2009;29 Suppl 1:148-58. https://doi.org/10.1111/j.1478-3231.2008.01929.x PMid:19207980 DOI: https://doi.org/10.1111/j.1478-3231.2008.01929.x

Chuma M, Terashita K, Sakamoto N. New molecularly targeted therapies against advanced hepatocellular carcinoma: From molecular pathogenesis to clinical trials and future directions. Hepatol Res. 2015;45(10):E1-11. https://doi.org/10.1111/hepr.12459 PMid:25472913 DOI: https://doi.org/10.1111/hepr.12459

Kalluri R. Basement membranes: Structure, assembly and role in tumour angiogenesis. Nat Rev Cancer. 2003;3(6):422-33. https://doi.org/10.1038/nrc1094 PMid:12778132 DOI: https://doi.org/10.1038/nrc1094

Quante M., Tu SP, Tomita H, Gonda T, Wang SS, Takashi S & Friedman R. Bone marrow-derived myofibroblasts contribute to the mesenchymal stem cell niche and promote tumor growth. Cancer Cell. 2011;19(2):257-72. https://doi.org/10.1016/j.ccr.2011.01.020 PMid:21316604 DOI: https://doi.org/10.1016/j.ccr.2011.01.020

Ishii G, Sangai T, Oda T, Aoyagi Y, Hasebe T, Kanomata N, et al. Bone-marrow-derived myofibroblasts contribute to the cancer-induced stromal reaction. Biochem Biophys Res Commun. 2003;309(1):232-40. https://doi.org/10.1016/s0006-291x(03)01544-4 PMid:12943687 DOI: https://doi.org/10.1016/S0006-291X(03)01544-4

Iwano M, Plieth D, Danoff TM, Xue C, Okada H, Neilson EG. Evidence that fibroblasts derive from epithelium during tissue fibrosis. J Clin Invest. 2002;110(3):341-50. https://doi.org/10.1172/JCI15518 PMid:12163453 DOI: https://doi.org/10.1172/JCI0215518

Zeisberg EM, Potenta S, Xie L, Zeisberg M, Kalluri R. Discovery of endothelial to mesenchymal transition as a source for carcinoma-associated fibroblasts. Cancer Res. 2007;67(21):10123-8. https://doi.org/10.1158/0008-5472.can-07-3127 PMid:17974953 DOI: https://doi.org/10.1158/0008-5472.CAN-07-3127

Kalluri R, Weinberg RA. The basics of epithelial mesenchymal transition. J Clin Invest. 2009;119(6):1420-8. https://doi.org/10.1172/JCI39104 PMid:19487818 DOI: https://doi.org/10.1172/JCI39104

Coussens LM, Werb Z. Inflammation and cancer. Nature. 2002;420(6917):860-7. https://doi.org/10.1038/nature01322 PMid:12490959 DOI: https://doi.org/10.1038/nature01322

De Visser KE, Korets LV, Coussens LM. De novo carcinogenesis promoted by chronic inflammation is B lymphocyte dependent. Cancer Cell. 2005;7(5):411-23. https://doi.org/10.1016/j.ccr.2005.04.014 PMid:15894262 DOI: https://doi.org/10.1016/j.ccr.2005.04.014

Kalluri R, Zeisberg M. Fibroblasts in cancer. Nat Rev Cancer. 2006;6(5):392-401. https://doi.org/10.1038/nrc1877 PMid:16572188 DOI: https://doi.org/10.1038/nrc1877

Yamamura Y, Asai N, Enomoto A, Kato T, Mii S, Kondo Y, et al. Akt-Girdin signaling in cancer-associated fibroblasts contributes to tumor progression. Cancer Res. 2015;75(5):813-23. https://doi.org/10.1158/0008-5472.Can-14-1317 PMid:25732845 DOI: https://doi.org/10.1158/0008-5472.CAN-14-1317

Karnoub AE, Dash AB, Vo AP, Sullivan A, Brooks MW, Bell GW & Weinberg, R. A. Mesenchymal stem cells within tumor stroma promote breast cancer metastasis. Nature. 2007;449(7162):557-63. https://doi.org/10.1038/nature06188 PMid:17914389 DOI: https://doi.org/10.1038/nature06188

Chen Y, Terajima M, Yang Y, Sun L, Ahn YH, Pankova D, et al. Lysyl hydroxylase 2 induces a collagen crosslink switch in tumor stroma. J Clin Invest. 2015;125(3):1147-62. https://doi.org/10.1172/JCI74725 PMid:25664850 DOI: https://doi.org/10.1172/JCI74725

Lee JI, Campbell JS. Role of desmoplasia in cholangiocarcinoma and hepatocellular carcinoma. J Hepatol. 2014;61(2):432-4. https://doi.org/10.1016/j.jhep.2014.04.014 PMid:24751832 DOI: https://doi.org/10.1016/j.jhep.2014.04.014

Lin JZ, Meng LL, Li YZ, Chen SX, Xu JL, Tang YJ, et al. Importance of activated hepatic stellate cells and angiopoietin-1 in the pathogenesis of hepatocellular carcinoma. Mol Med Rep. 2016;14(2):1721-5. https://doi.org/10.3892/mmr.2016.5418 PMid:27358066 DOI: https://doi.org/10.3892/mmr.2016.5418

Fang M, Yuan J, Chen M, Sun Z, Liu L, Cheng G, et al. The heterogenic tumor microenvironment of hepatocellular carcinoma and prognostic analysis based on tumor neo-vessels, macrophages and α SMA. Oncol Lett. 2018;15(4):4805-12. https://doi.org/10.3892/ol.2018.7946 PMid:29552120 DOI: https://doi.org/10.3892/ol.2018.7946

Olaso E, Salado C, Egilegor E, Gutierrez V, Santisteban A, Sancho-Bru P, et al. Proangiogenic role of tumor-activated hepatic stellate cells in experimental melanoma metastasis. Hepatology. 2003;37(3):674-85. https://doi.org/10.1053/jhep.2003.50068 PMid:12601365 DOI: https://doi.org/10.1053/jhep.2003.50068

Liu H, Shen J, Lu K. IL-6 and PD-L1 blockade combination inhibits hepatocellular carcinoma cancer development in mouse model. Biochem Biophys Res Commun. 2017;486(2):239-44. https://doi.org/10.1016/j.bbrc.2017.02.128 PMid:28254435 DOI: https://doi.org/10.1016/j.bbrc.2017.02.128

Mishima K, Kato Y, Kaneko MK, Nishikawa R, Hirose T, Matsutani M. Increased expression of podoplanin in malignant astrocytic tumors as a novel molecular marker of malignant progression. Acta Neuropathol. 2006;111(5):483-8. https://doi.org/10.1007/s00401-006-0063-y PMid:16596424 DOI: https://doi.org/10.1007/s00401-006-0063-y

Wicki A, Christofori G. The potential role of podoplanin in tumour invasion. Br J Cancer. 2007;96(1):1-5. https://doi.org/10.1038/sj.bjc.6603518 PMid:17179989 DOI: https://doi.org/10.1038/sj.bjc.6603518

Ordóñez NG. Podoplanin: A novel diagnostic immunohistochemical marker. Adv Anat Pathol. 2006;13(2):83-8. https://doi.org/10.1097/01.pap.0000213007.48479.94 PMid:16670463 DOI: https://doi.org/10.1097/01.pap.0000213007.48479.94

Ordóñez NG. Value of podoplanin as an immunohistochemical marker in tumor diagnosis: A review and update. Appl Immunohistochem Mol Morphol. 2014;22(5):331-47. https://doi.org/10.1097/PAI.0b013e31828a83c5 PMid:23531849 DOI: https://doi.org/10.1097/PAI.0b013e31828a83c5

Cueni LN, Hegyi I, Shin JW, Albinger-Hegyi A, Gruber S, Kunstfeld R, et al. Tumor lymphangiogenesis and metastasis to lymph nodes induced by cancer cell expression of podoplanin. Am J Pathol. 2010;177(2):1004-16. https://doi.org/10.2353/ajpath.2010.090703 PMid:20616339 DOI: https://doi.org/10.2353/ajpath.2010.090703

Moustakas A, Heldin CH. Signaling networks guiding epithelial-mesenchymal transitions during embryogenesis and cancer progression. Cancer Sci. 2007;98(10):1512-20. https://doi.org/10.1111/j.1349-7006.2007.00550.x PMid:17645776 DOI: https://doi.org/10.1111/j.1349-7006.2007.00550.x

Acton SE, Astarita JL, Malhotra D, Lukacs-Kornek V, Franz B. Hess PR, et al. Podoplanin-rich stromal networks induce dendritic cell motility via activation of the C-Type lectin receptor CLEC-2. Immunity. 2012;37(2):276-89. https://doi.org/10.1016/j.immuni.2012.05.022 PMid:22884313 DOI: https://doi.org/10.1016/j.immuni.2012.05.022

Kaneko MK, Kato Y, Kitano T, Osawa M. Conservation of a platelet activating domain of aggrus/podoplanin as a platelet aggregation-inducing factor. Gene. 2006;378:52-7. https://doi.org/10.1016/j.gene.2006.04.023 PMid:16766141 DOI: https://doi.org/10.1016/j.gene.2006.04.023

Suzuki-Inoue K, Kato Y, Inoue O, Kaneko MK, Mishima K, Yatomi Y, et al. Involvement of the snake toxin receptor CLEC-2, in Podoplanin-mediated platelet activation, by cancer cells. J Biol Chem. 2007;282(36):25993-6001. https://doi.org/10.1074/jbc.M702327200 PMid:17616532 DOI: https://doi.org/10.1074/jbc.M702327200

Kato Y, Kaneko MK, Kunita A, Ito H, Kameyama A, Ogasawara S, et al. Molecular analysis of the pathophysiological binding of the platelet aggregation-inducing factor podoplanin to the C-type lectin-like receptor CLEC-2. Cancer Sci. 2008;99(1):54-61. https://doi.org/10.1111/j.1349-7006.2007.00634.x PMid:17944973 DOI: https://doi.org/10.1111/j.1349-7006.2007.00634.x

Suzuki-Inoue K. Essential in vivo roles of the platelet activation receptor CLEC-2 in tumour metastasis, lymphangiogenesis and thrombus formation. J Biochem. 2011;150(2):127-32. https://doi.org/10.1093/jb/mvr079 PMid:21693546 DOI: https://doi.org/10.1093/jb/mvr079

Ogasawara S, Kaneko MK, Price JE, Kato Y. Characterization of anti-Podoplanin monoclonal antibodies: Critical epitopes for neutralizing the interaction between podoplanin and CLEC-2. Hybridoma (Larchmt). 2008;27(4):259-67. https://doi.org/10.1089/hyb.2008.0017 PMid:18707544 DOI: https://doi.org/10.1089/hyb.2008.0017

Kaneko MK, Kunita A, Abe S, Tsujimoto Y, Fukayama M, Goto K, et al. Chimeric anti-podoplanin antibody suppresses tumor metastasis through neutralization and antibody-dependent cellular cytotoxicity. Cancer Sci. 2012;103(11):1913-9. https://doi.org/10.1111/j.1349-7006.2012.02385.x PMid:22816430 DOI: https://doi.org/10.1111/j.1349-7006.2012.02385.x

Yamada Y, Matsumoto T, Arakawa A, Ikeda S, Fujime M, Komuro Y, et al. Evaluation using a combination of lymphatic invasion on D2-40 immunostain and depth of dermal invasion is a strong predictor for nodal metastasis in extramammary Paget’s disease. Pathol Int. 2008;58(2):114-7. https://doi.org/10.1111/j.1440-1827.2007.02198.x PMid:18199161 DOI: https://doi.org/10.1111/j.1440-1827.2007.02198.x

Barresi V, Bonetti LR, Vitarelli E, di Gregorio C, de Leon MP, Barresi G. Immunohistochemical assessment of lymphovascular invasion in stage I colorectal carcinoma: Prognostic relevance and correlation with nodal micrometastases. Am J Surg Pathol. 2012;36(1):66-72. https://doi.org/10.1097/pas.0b013e31822d3008 PMid:21989343 DOI: https://doi.org/10.1097/PAS.0b013e31822d3008

Kirsch R, Messenger DE, Riddell RH, Pollett A, Cook M, Al-Haddad S, et al. Venous invasion in colorectal cancer: Impact of an elastin stain on detection and interobserver agreement among gastrointestinal and non gastrointestinal pathologists. Am J Surg Pathol. 2013;37(2):200-10. https://doi.org/10.1097/PAS.0b013e31826a92cd PMid:23108018 DOI: https://doi.org/10.1097/PAS.0b013e31826a92cd

Cioca A, Cimpean AM, Ceausu RA, Tarlui V, Toma A, Marin I, et al. Evaluation of podoplanin expression in hepatocellular carcinoma using RNAscope and immunohistochemistry-a preliminary report. Cancer Genomics Proteomics. 2017;14(5):383-7. https://doi.org/10.21873/cgp.20048 PMid:28871005 DOI: https://doi.org/10.21873/cgp.20048

Edmondson HA, Steiner PE. Primary carcinoma of the liver. A study of 100 cases among 48, 900 necropsies. Cancer. 1954;7(3):462-503. https://doi.org/10.1002/1097-0142(195405)7:3<462:aid-cncr2820070308>3.0.co;2-e PMid:13160935 DOI: https://doi.org/10.1002/1097-0142(195405)7:3<462::AID-CNCR2820070308>3.0.CO;2-E

Andreea C, Ceausu AR, Marin I, Raica M, Cimpean AM. The multifaceted role of podoplanin expression in hepatocellular carcinoma. Eur J Histochem. 2017;61(1):2707. https://doi.org/10.4081/ejh.2017.2707 PMid:28348421 DOI: https://doi.org/10.4081/ejh.2017.2707

Han DH, Choi GH, Kim KS, Choi JS, Park YN, Kim SU, et al. Prognostic significance of the worst grade in hepatocellular carcinoma with heterogeneous histologic grades of differentiation. J Gastroenterol Hepatol. 2013;28(8):1384-90. https://doi.org/10.1111/jgh.12200 PMid:23517197 DOI: https://doi.org/10.1111/jgh.12200

Zucman-Rossi J, Villanueva A, Nault JC, Llovet JM. Genetic landscape and biomarkers of hepatocellular carcinoma. Gastroenterology. 2015;149:1226-39.e4. https://doi.org/10.1053/j.gastro.2015.05.061 PMid:26099527 DOI: https://doi.org/10.1053/j.gastro.2015.05.061

Wu G, Wu J, Wang B, Zhu X, Shi X, Ding Y. Importance of tumor size at diagnosis as a prognostic factor for hepatocellular carcinoma survival: A population-based study. Cancer Manag Res. 2018;10:4401-10. https://doi.org/10.2147/CMAR.S177663 PMid:30349373 DOI: https://doi.org/10.2147/CMAR.S177663

Fujii T, Zen Y, Sato Y, Sasaki M, Enomae M, Minato H, et al. Podoplanin is a useful diagnostic marker for epithelioid hemangioendothelioma of the liver. Mod Pathol. 2008;21(2):125-30. https://doi.org/10.1038/modpathol.3800986 PMid:18084256 DOI: https://doi.org/10.1038/modpathol.3800986

Matsuwaki R, Ishii G, Zenke Y, Neri S, Aokage K, Hishida T, Nagai K. Immunophenotypic features of metastatic lymph node tumors to predict recurrence in N2 lung squamous cell carcinoma. Cancer Sci. 2014;105(7):905-11. https://doi.org/10.1111/cas.12434 PMid:24814677 DOI: https://doi.org/10.1111/cas.12434

Llovet JM, Ricci S, Mazzaferro V, Hilgard P, Gane E, Blanc JF, et al. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med. 2008;359:378-90. https://doi.org/10.1056/ NEJMoa0708857 PMid:18650514 DOI: https://doi.org/10.1056/NEJMoa0708857

Pang R, Poon RT. Angiogenesis and antiangiogenic therapy in hepatocellular carcinoma. Cancer Lett. 2006;242(2):151-67. https://doi.org/10.1016/j.canlet.2006.01.008 PMid:16564617 DOI: https://doi.org/10.1016/j.canlet.2006.01.008

Abd El-Fattah GA, Abdrabuh RM, Roshdy RG. Evaluation of cancer-associated fibroblasts markers in hepatocellular carcinoma. Med J Cairo Univ. 2019;87(7):4337-43. https://doi.org/10.21608/mjcu.2019.77440 DOI: https://doi.org/10.21608/mjcu.2019.77440

Thelen A, Jonas S, Benckert C, Weichert W. Tumor-associated lymphangiogenesis correlates with prognosis after resection of human hepatocellular carcinoma. Ann Surg Oncol. 2009;16:1222-30. https://doi.org/10.1245/s10434-009-0380-1 DOI: https://doi.org/10.1245/s10434-009-0380-1

He Y, Liu F, Mou S, Li Q, Wang S. Prognostic analysis of hepatocellular carcinoma on the background of liver cirrhosis via contrast-enhanced ultrasound and pathology. Oncol Lett. 2018;15(3):3746-52. https://doi.org/10.3892/ol.2018.7792 PMid:29467891 DOI: https://doi.org/10.3892/ol.2018.7792

Yoshida T, Ishii G, Goto K, Neri S, Hashimoto H, Yoh K, et al. Podoplanin-positive cancer-associated fibroblasts in the tumor microenvironment induce primary resistance to EGFR-TKIs in lung adenocarcinoma with EGFR mutation. Clin Cancer Res. 2015;21(3):642-51. https://doi.org/10.1158/1078-0432.CCR-14-0846 PMid:25388165 DOI: https://doi.org/10.1158/1078-0432.CCR-14-0846

Ciurea RN, Stepan AE, Simionescu C, Margaritescu C, Patrascu V, Ciurea ME. The role of podoplanin in the lymphangiogenesis of oral squamous carcinomas. Curr Health Sci J. 2015;41(2):126-34. https://doi.org/10.12865/CHSJ.41.02.07 PMid:30364917

Sha M, Jeong S, Wang X, Tong Y, Cao J, Sun HY, et al. Tumor-associated lymphangiogenesis predicts unfavorable prognosis of intrahepatic cholangiocarcinoma. BMC Cancer. 2019;19(1):208. https://doi.org/10.1186/s12885-019-5420-z PMid:30849953 DOI: https://doi.org/10.1186/s12885-019-5420-z

Obulkasim H, Shi X, Wang J, Li J, Dai B, Wu P, et al. Podoplanin is an important stromal prognostic marker in perihilar cholangiocarcinoma. Oncol Lett. 2018;15(1):137-46. https://doi.org/10.3892/ol.2017.7335 PMid:29391878 DOI: https://doi.org/10.3892/ol.2017.7335

Aishima S, Nishihara Y, Iguchi T, Taguchi K, Taketomi A, Maehara Y. Lymphatic spread is related to VEGF-C expression and D2-40-positive myofibroblasts in intrahepatic cholangiocarcinoma. Mod Pathol. 2008;21(3):256-64. https://doi.org/10.1038/modpathol.3800985 PMid:18192971 DOI: https://doi.org/10.1038/modpathol.3800985

Downloads

Published

2022-02-25

How to Cite

1.
Amer S, Nabil M, Negm M. Expression of Podoplanin in Hepatocellular Carcinoma in a Sample of Egyptian Population – Immunohistopathological Study. Open Access Maced J Med Sci [Internet]. 2022 Feb. 25 [cited 2024 Jun. 18];10(A):366-75. Available from: https://oamjms.eu/index.php/mjms/article/view/8460