Quantitative EEG Correlates with NIHSS and MoCA for Assessing the Initial Stroke Severity in Acute Ischemic Stroke Patients
DOI:
https://doi.org/10.3889/oamjms.2022.8483Keywords:
qEEG, Stroke severity, NIHSS, MoCA, Acute ischemic strokeAbstract
BACKGROUND: National Institutes of Health Stroke Scale (NIHSS) and Montreal Cognitive Assessment (MoCA) measure stroke severity by assessing the functional and cognitive outcome, respectively. However, they cannot be used to measure subtle evolution in clinical symptoms during the early phase. Quantitative EEG (qEEG) can detect any subtle changes in CBF and brain metabolism thus may also benefit for assessing the severity.
AIM: This study aims to identify the correlation between qEEG with NIHSS and MoCA for assessing the initial stroke severity in acute ischemic stroke patients.
METHODS: This was a cross-sectional study. We recruited 30 patients with first-ever acute ischemic stroke hospitalized in Dr. Sardjito General Hospital, Yogyakarta, Indonesia. We measured the NIHSS, MoCA score, and qEEG parameter during the acute phase of stroke. Correlation and regression analysis was completed to investigate the relationship between qEEG parameter with NIHSS and MoCA.
RESULTS: Four acute qEEG parameter demonstrated moderate-to-high correlations with NIHSS and MoCA. DTABR had positive correlation with NIHSS (r = 0.379, p = 0.04). Meanwhile, delta-absolute power, DTABR, and DAR were negatively correlated with MoCA score (r = −0.654, p = 0.01; r = −0.397, p = 0.03; and r = −0.371, p = 0.04, respectively). After adjusted with the confounding variables, delta-absolute power was independently associated with MoCA score, but not with NIHSS (B = −2.887, 95% CI (−4.304–−1.470), p < 0.001).
CONCLUSIONS: Several qEEG parameters had significant correlations with NIHSS and MoCA in acute ischemic stroke patients. The use of qEEG in acute clinical setting may provide a reliable and efficient prediction of initial stroke severity. Further cohort study with larger sample size and wide range of stroke severity is still needed.Downloads
Metrics
Plum Analytics Artifact Widget Block
References
Corso G, Bottacchi E, Tosi P, Caligiana L, Lia C, Veronese Morosini M, et al. Outcome predictors in first-ever ischemic stroke patients: A population-based study. Int Sch Res Notices. 2014;2014:904647. https://doi.org/10.1155/2014/904647 PMid:27437502 DOI: https://doi.org/10.1155/2014/904647
Williams LS, Yilmaz EY, Lopez-Yunez AM. Retrospective assessment of initial stroke severity with the NIH stroke scale. Stroke. 2000;31(4):858-62. https://doi.org/10.1161/01.str.31.4.858 PMid:10753988 DOI: https://doi.org/10.1161/01.STR.31.4.858
Wouters A, Nysten C, Thijs V, Lemmens R. Prediction of outcome in patients with acute ischemic stroke based on initial severity and improvement in the first 24 h. Front Neurol. 2018;9:308. https://doi.org/10.3389/fneur.2018.00308 PMid:29867722 DOI: https://doi.org/10.3389/fneur.2018.00308
Bushnell CD, Johnston DC, Goldstein LB. Retrospective assessment of initial stroke severity: Comparison of the NIH stroke scale and the canadian neurological scale. Stroke. 2001;32(3):656-60. https://doi.org/10.1161/01.str.32.3.656 PMid:11239183 DOI: https://doi.org/10.1161/01.STR.32.3.656
Abzhandadze T, Reinholdsson M, Sunnerhagen KS. NIHSS is not enough for cognitive screening in acute stroke: A cross-sectional, retrospective study. Sci Rep. 2020;10(1):3945. https://doi.org/10.1038/s41598-020-60584-4 PMid:32107460 DOI: https://doi.org/10.1038/s41598-019-57316-8
Marsh EB, Lawrence E, Gottesman RF, Llinas RH. The NIH stroke scale has limited utility in accurate daily monitoring of neurologic status. Neurohospitalist. 2016;6(3):97-101. https://doi.org/10.1177/1941874415619964 PMid:27366291 DOI: https://doi.org/10.1177/1941874415619964
Lyden P. Using the national institutes of health stroke scale: A cautionary tale. Stroke. 2017;48(2):513-9. https://doi.org/10.1161/STROKEAHA.116.015434 PMid:28077454 DOI: https://doi.org/10.1161/STROKEAHA.116.015434
Cumming TB, Marshall RS, Lazar RM. Stroke, cognitive deficits, and rehabilitation: Still an incomplete picture. Int J Stroke. 2013;8(1):38-45. https://doi.org/10.1111/j.1747-4949.2012.00972.x PMid:23280268 DOI: https://doi.org/10.1111/j.1747-4949.2012.00972.x
Chiti G, Pantoni L. Use of montreal cognitive assessment in patients with stroke. Stroke. 2014;45(10):3135-40. https://doi.org/10.1161/strokeaha.114.004590 PMid:25116881 DOI: https://doi.org/10.1161/STROKEAHA.114.004590
Zuo L, Dong Y, Zhu R, Jin Z, Li Z, Wang Y, et al. Screening for cognitive impairment with the montreal cognitive assessment in chinese patients with acute mild stroke and transient ischaemic attack: A validation study. BMJ Open. 2016;6(7):e011310. https://doi.org/10.1136/bmjopen-2016-011310 PMid:27406642 DOI: https://doi.org/10.1136/bmjopen-2016-011310
Koski L. Validity and applications of the montreal cognitive assessment for the assessment of vascular cognitive impairment. Cerebrovasc Dis. 2013;36(1):6-18. https://doi.org/10.1159/000352051 PMid:23920318 DOI: https://doi.org/10.1159/000352051
Foreman B, Claassen J. Quantitative EEG for the detection of brain ischemia. In: Annual Update in Intensive Care and Emergency Medicine 2012; 2012. p. 746-58. DOI: https://doi.org/10.1007/978-3-642-25716-2_67
Laman DM, Wieneke GH, van Duijn H, Veldhuizen RJ, van Huffelen AC. QEEG changes during carotid clamping in carotid endarterectomy: Spectral edge frequency parameters and relative band power parameters. J Clin Neurophysiol. 2005;22(4):244-52. https://doi.org/10.1097/01.wnp.0000167931.83516.cf PMid:16093896 DOI: https://doi.org/10.1097/01.WNP.0000167931.83516.CF
Wilkinson CM, Burrell JI, Kuziek JW, Thirunavukkarasu S, Buck BH, Mathewson KE. Predicting stroke severity with a 3-min recording from the Muse portable EEG system for rapid diagnosis of stroke. Sci Rep. 2020;10(1):18465. https://doi.org/10.1038/s41598-020-75379-w PMid:33116187 DOI: https://doi.org/10.1038/s41598-020-75379-w
Cillessen J, van Huffelen A, Kappelle L, Algra A, van Gijn J. Electroencephalography improves the prediction of functional outcome in the acute stage of cerebral ischemia. Stroke. 1994;25(10):1968-72. https://doi.org/10.1161/01.str.25.10.1968 PMid:8091439 DOI: https://doi.org/10.1161/01.STR.25.10.1968
Cuspineda E, Machado C, Aubert E, Galan L, Liopis F, Avila Y. Predicting outcome in acute stroke: A comparison between QEEG and the Canadian neurological scale. Clin Electroencephalogr. 2003;34(1):1-4. https://doi.org/10.1177/155005940303400104 PMid:12515444 DOI: https://doi.org/10.1177/155005940303400104
Finnigan SP, Walsh M, Rose SE, Chalk JB. Quantitative EEG indices of sub-acute ischaemic stroke correlate with clinical outcomes. Clin Neurophysiol. 2007;118(11):2525-32. https://doi.org/10.1016/j.clinph.2007.07.021 PMid:17889600 DOI: https://doi.org/10.1016/j.clinph.2007.07.021
de Medeiros Kanda PA, Anghinah R, Smidth MT, Silva JM. The clinical use of quantitative EEG in cognitive disorders. Dement Neuropsychol. 2009;3(3):195-203. https://doi.org/10.1590/S1980-57642009DN30300004 PMid:29213628 DOI: https://doi.org/10.1590/S1980-57642009DN30300004
Khan M, Baird GL, Goddeau Jr RP, Silver B, Henninger N. Alberta stroke program early CT Score infarct location predicts outcome following M2 occlusion. Front Neurol. 2017;8:98. https://doi.org/10.3389/fneur.2017.00098 PMid:28352248 DOI: https://doi.org/10.3389/fneur.2017.00098
Jellinger PS, Smith DA, Mehta AE, Ganda O, Handelsman Y, Rodbard HW, et al. American association of clinical endocrinologists’ guidelines for management of dyslipidemia and prevention of atherosclerosis. Endocr Pract. 2012;18 Suppl 1:1-78. https://doi.org/10.4158/ep.18.s1.1 PMid:22522068 DOI: https://doi.org/10.4158/EP.18.S1.1
Hage V. The NIH stroke scale: A window into neurological status. Nurs Spect. 2011;24(15):44-9.
Carson N, Leach L, Murphy KJ. A re‐examination of montreal cognitive assessment (MoCA) cutoff scores. Int J Geriatr Psychiatry. 2018;33(2):379-88. https://doi.org/10.1002/gps.4756 PMid:28731508 DOI: https://doi.org/10.1002/gps.4756
Kaiser DA. Basic principles of quantitative EEG. J Adult Dev. 2005;12(2-3):99-104. DOI: https://doi.org/10.1007/s10804-005-7025-9
Song J, Davey C, Poulsen C, Luu P, Turovets S, Anderson E, et al. EEG source localization: Sensor density and head surface coverage. J Neurosci Meth. 2015;256:9-21. https://doi.org/10.1016/j.jneumeth.2015.08.015 PMid:26300183 DOI: https://doi.org/10.1016/j.jneumeth.2015.08.015
Sheorajpanday R, Nagels.G, Weeren A, van Putten M, de Deyn P. Quantitative EEG in ischemic stroke: Correlation with functional status after 6 months. Clin Neurophysiol. 2011;122(5):874-83. https://doi.org/10.1016/j.clinph.2010.07.028 PMid:20961806 DOI: https://doi.org/10.1016/j.clinph.2010.07.028
Machado C, Cuspineda E, Valdés P, Virues T, Liopis F, Bosch J, et al. Assessing acute middle cerebral artery ischemic stroke by quantitative electric tomography. Clin EEG Neurosci. 2004;35(3):116-24. https://doi.org/10.1177/155005940403500303 PMid:15259617 DOI: https://doi.org/10.1177/155005940403500303
Assenza G, Zappasodi F, Squitti R, Altamura C, Ventriglia M, Ercolani M, et al. Neuronal functionality assessed by magnetoencephalography is related to oxidative stress system in acute ischemic stroke. NeuroImage. 2009;44(4):1267-73. https://doi.org/10.1016/j.neuroimage.2008.09.049 PMid:19010427 DOI: https://doi.org/10.1016/j.neuroimage.2008.09.049
Finnigan SP, Rose SE, Chalk JB. Rapid EEG changes indicate reperfusion after tissue plasminogen activator injection in acute ischaemic stroke. Clin Neurophysiol. 2006;117(10):2338-9. https://doi.org/10.1016/j.clinph.2006.06.718 PMid:16926108 DOI: https://doi.org/10.1016/j.clinph.2006.06.718
Finnigan SP, van Putten M. EEG in ischemic stroke quantitative EEG can uniquely inform (sub-) acute prognoses and clinical management. Clin Neurophysiol. 2013;124(1):10-9. https://doi.org/10.1016/j.clinph.2012.07.003 PMid:22858178 DOI: https://doi.org/10.1016/j.clinph.2012.07.003
Bentes C, Peralta AR, Viana P, Martins H, Morgado C, Casimiro C, et al. Quantitative EEG and functional outcome following acute ischemic stroke. Clin Neurophysiol. 2018;129(8):1680-7. https://doi.org/10.1016/j.clinph.2018.05.021 PMid:29935475 DOI: https://doi.org/10.1016/j.clinph.2018.05.021
Ajčević M, Furlanis G, Naccarato M, Miladinović A, Buoite Stella A, Caruso P, et al. Hyper-acute EEG alterations predict functional and morphological outcomes in thrombolysis-treated ischemic stroke: A wireless EEG study. Med Biol Eng Comput. 2021;59(1):121-9. https://doi.org/10.1007/s11517-020-02280-z PMid:33274407 DOI: https://doi.org/10.1007/s11517-020-02280-z
Leon-Carrion J, Martin-Rodriguez JF, Damas-Lopez J, Barroso y Martin JM, Dominguez-Morales MR. Delta-alpha ratio correlates with level of recovery after neurorehabilitation in patients with acquired brain injury. Clin Neurophysiol. 2009;120(6):1039-45. https://doi.org/10.1016/j.clinph.2009.01.021 PMid:19398371 DOI: https://doi.org/10.1016/j.clinph.2009.01.021
Aminov A, Rogers JM, Johnstone SJ, Middleton S, Wilson PH. Acute single channel EEG predictors of cognitive function after stroke. PLoS One. 2017;12(10):e0185841. https://doi.org/10.1371/journal.pone.0185841 PMid:28968458 DOI: https://doi.org/10.1371/journal.pone.0185841
Schleiger E, Sheikh N, Rowland T, Wong A, Read S, Finnigan S. Frontal EEG delta/alpha ratio and screening for post-stroke cognitive deficits: The power of four electrodes. Int J Psychophysiol. 2014;94(1):19-24. https://doi.org/10.1016/j.ijpsycho.2014.06.012 PMid:24971913 DOI: https://doi.org/10.1016/j.ijpsycho.2014.06.012
Finnigan S, Wong A, Read S. Defining abnormal slow EEG activity in acute ischaemic stroke: Delta/alpha ratio as an optimal QEEG index. Clin Neurophysiol. 2016;127(2):1452-9. https://doi.org/10.1016/j.clinph.2015.07.014 PMid:26251106 DOI: https://doi.org/10.1016/j.clinph.2015.07.014
Yener GG, Emek-Savaş DD, Lizio R, Çavuşoğlu B, Carducci F, Ada E, et al. Frontal delta event-related oscillations relate to frontal volume in mild cognitive impairment and healthy controls. Int J Psychophysiol. 2016;103:110-7. https://doi.org/10.1016/j.ijpsycho.2015.02.005 PMid:25660300 DOI: https://doi.org/10.1016/j.ijpsycho.2015.02.005
Kaplan PW. The EEG in metabolic encephalopathy and coma. J Clin Neurophysiol. 2004;21(5):307-18. PMid:15592005
Ostrowski LM, Spencer ER, Bird LM, Thibert R, Komorowski RW, Kramer MA, et al. Delta power robustly predicts cognitive function in Angelman syndrome. Ann Clin Transl Neurol. 2021;8(7):1433-45. https://doi.org/10.1002/acn3.51385 PMid:34047077 DOI: https://doi.org/10.1002/acn3.51385
Downloads
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2022 Ahmad Asmedi, Abdul Gofir, Sekar Satiti, Paryono Paryono, Ditha Praritama Sebayang, Dyanne Paramita Arindra Putri, Amelia Vidyanti (Author)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
http://creativecommons.org/licenses/by-nc/4.0