Aspirin Protective Effect on Cyclophosphamide Induced Hematological Toxicity

Authors

  • Imad Hashim Department of Pharmacology, Al-Kindy College of Medicine, University of Baghdad, Baghdad, Iraq
  • Zaid Al-Attar Department of Pharmacology, Al-Kindy College of Medicine, University of Baghdad, Baghdad, Iraq
  • Saba Jasim Hamdan Department of Pharmacology, Al-Kindy College of Medicine, University of Baghdad, Baghdad, Iraq

DOI:

https://doi.org/10.3889/oamjms.2022.8505

Keywords:

Aspirin, Prostaglandin, Hematological, Cytotoxicity, Cyclophosphamide

Abstract

Bone marrow toxicity is the most important factor limiting the use of cytotoxic drugs like alkylating agents in cancer treatment. Recently PG synthase enzyme inhibitors have been reported to potentiate the cytotoxic effects of these agents on cancer cells but little is known if they can affect the toxicity of these agents on bone marrow or other  tissues. Cyclophosphamide is one of the most commonly used alkylating agent.

In the present work, the effect of these PG synthase enzyme inhibitors, aspirin on cyclophosphamide myelotoxicity was determined employing the peripheral blood count to reflect bone marrow injury. The effect on body weight changes caused by cyclophosphamide was also determined.

  1. Cyclophosphamide in doses of 25, 50 and 75 mg/kg i. v. produced as a dose dependent reduction in total WBC count, granulocyte, non granulocyte, and Hb% which was maximum on second day after injection and still present on 5th day post injection. It also produced a dose dependent reduction in body weight on day 5 after injection.
  2. Aspirin in doges of 75, 150 and 300 mg/kg i. m. protected against the reduction in WBC counts 'measured for 5 days after injection of cyclophosphamide (50 mg/kg). This protection was not dose dependent,
    though it was more optimum with 300 mg/kg and disappeared largely when a dose of 450 mg/kg was used. Aspirin did not prevent the changes in Hb% but retard the reduction in body weight caused by cyclophosphamide.
  3. It is concluded that aspirin can help to reduce injury and enhance recovery from bone marrow toxicity caused by cytotoxic agents such as the alkylating drugs cyclophosphamide for which no specific antidote is available. Aspirin produces this effect possibly by eliminating the harmful inhibitory effect of excess PGs or leukotrienes, released by bone marrow injury on growth factors of haemopoietic progenitor cells.

The magnitude of this protection on WBC counts does not seem to differ between either PG synthase enzyme inhibitors or steroids when used alone or in combination although a synergistic effect in protecting erythropoiesis is observed.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

Wyatt JE, Pettit WL, Harirforoosh S. Pharmacogenetics of nonsteroidal anti-inflammatory drugs. Pharmacogenomics J. 2012;12(6):462-7. https://doi.org/10.1038/tpj.2012.40 PMid:23044603 DOI: https://doi.org/10.1038/tpj.2012.40

Piper PJ. Pharmacology of leukotrienes. Br Med Bull. 1983;39(3):255-9. PMid:6313117 DOI: https://doi.org/10.1093/oxfordjournals.bmb.a071829

Liberman AC, Budziñski ML, Sokn C, Gobbini RP, Steininger A, Arzt E. Regulatory and mechanistic actions of glucocorticoids on T and inflammatory cells. Front Endocrinol (Lausanne). 2018;9:235. https://doi.org/10.3389/fendo.2018.00235 PMid:29867767 DOI: https://doi.org/10.3389/fendo.2018.00235

Ozawa K, Miura Y, Suda T, Motoyoshi K, Takakifi F. Effects of prostaglandin e on the proliferation and differentiation of leukemic progenitor cells in acute nonlymphocytic leukemia. Int J Cell Cloning. 1983;1(6):440-50. https://doi.org/10.1002/stem.5530010603 PMid:6584501 DOI: https://doi.org/10.1002/stem.5530010603

Kalinski P. Regulation of immune responses by prostaglandin E2. J Immunol. 2012;188(1):21-8. PMid:22187483 DOI: https://doi.org/10.4049/jimmunol.1101029

Betz M, Fox BS. Prostaglandin E2 inhibits production of Th1 lymphokines but not of Th2 lymphokines. J Immunol. 1991;146(1):108-13. PMid:1845802

Lawrence R, Sorrell T. Eicosapentaenoic acid in cystic fibrosis: Evidence of a pathogenetic role for leukotriene B4. Lancet. 1993;342(8869):465-9. https://doi.org/10.1016/0140-6736(93)91594-c PMid:8102430 DOI: https://doi.org/10.1016/0140-6736(93)91594-C

Wang D, Dubois RN. Prostaglandins and cancer. Gut. 2006;55(1):115-22. PMid:16118353 DOI: https://doi.org/10.1136/gut.2004.047100

Aldinucci D, Borghese C, Casagrande N. Formation of the immunosuppressive microenvironment of classic hodgkin lymphoma and therapeutic approaches to counter it. Int J Mol Sci. 2019;20(10):2416. PMid:31096713 DOI: https://doi.org/10.3390/ijms20102416

Vainchenker W, Bouguet J, Guichard J, Breton-Gorius J. Megakaryocyte colony formation from human bone marrow precursors. Blood. 1979;54(4):940-5. https://doi.org/10.1182/blood.v54.4.940.bloodjournal544940 PMid:476307 DOI: https://doi.org/10.1182/blood.V54.4.940.940

Ma X, Holt D, Kundu N, Reader J, Goloubeva O, Take Y, et al. A prostaglandin E (PGE) receptor EP4 antagonist protects natural killer cells from PGE(2)-mediated immunosuppression and inhibits breast cancer metastasis. Oncoimmunology. 2013;2(1):e22647-e. https://doi.org/10.4161/onci.22647 PMid:23482441 DOI: https://doi.org/10.4161/onci.22647

Ledwozyw A, Pruszkowska R, Trawińska B, Ruciński T, Kadiołka A. The effect of prostaglandins E1, E2, F1 alpha and F2 alpha on pig erythrocytes during haemolysis induced with aspirin and hypotonic NaCl solution. Acta Physiol Polonica. 1985;36(5-6):352-9. PMid:3837604

Agard M, Asakrah S, Morici L. PGE2 suppression of innate immunity during mucosal bacterial infection. Front Cell Infect Microbiol. 2013;3:45. https://doi.org/10.3389/ fcimb.2013.00045 PMid:23971009 DOI: https://doi.org/10.3389/fcimb.2013.00045

Brodsky RA. High dose cyclophosphamide treatment for autoimmune disorders. ScientificWorldJournal. 2002;2:1808-15. PMid:12806171 DOI: https://doi.org/10.1100/tsw.2002.863

Mansour H, El Kiki S, Hasan H. Protective effect of N-acetylcysteine on cyclophosphamide-induced cardiotoxicity in rats. Environ Toxicol Pharmacol. 2015;40(2):417-22. https://doi.org/10.1016/j.etap.2015.07.013 PMid:26262887 DOI: https://doi.org/10.1016/j.etap.2015.07.013

Luce JK, Simons JA. Efficacy of mesna in preventing further cyclophosphamide-induced hemorrhagic cystitis. Med Pediatr Oncol. 1988;16(6):372-4. https://doi.org/10.1002/mpo.2950160603 PMid:3143903 DOI: https://doi.org/10.1002/mpo.2950160603

Ayza MA, Zewdie KA, Tesfaye BA, Wondafrash DZ, Berhe AH. The role of antioxidants in ameliorating cyclophosphamide-induced cardiotoxicity. Oxidative Med Cell Longevity. 2020;2020:4965171. https://doi.org/10.1155/2020/4965171 DOI: https://doi.org/10.1155/2020/4965171

Benna M, Guy JB, Bosacki C, Jmour O, Ben Mrad M, Ogorodniitchouk O, et al. Chemoradiation and granulocyte-colony or granulocyte macrophage-colony stimulating factors (G-CSF or GM-CSF): Time to think out of the box? Br J Radiol. 2020;93(1109):20190147. https://doi.org/10.1259/bjr.20190147 PMid:31971824 DOI: https://doi.org/10.1259/bjr.20190147

Mehta HM, Malandra M, Corey SJ. G-CSF and GM-CSF in neutropenia. J Immunol. 2015;195(4):1341-9. https://doi.org/10.4049/jimmunol.1500861 PMid:26254266 DOI: https://doi.org/10.4049/jimmunol.1500861

Logan RM, Al-Azri AR, Bossi P, Stringer AM, Joy JK, Soga Y, et al. Systematic review of growth factors and cytokines for the management of oral mucositis in cancer patients and clinical practice guidelines. Supportive Care Cancer. 2020;28(5):2485-98. https://doi.org/10.1007/s00520-019-05170-9 PMid:32080767 DOI: https://doi.org/10.1007/s00520-019-05170-9

Fischer SM, Hawk ET, Lubet RA. Coxibs and other nonsteroidal anti-inflammatory drugs in animal models of cancer chemoprevention. Cancer Prev Res. 2011;4(11):1728-35. https://doi.org/10.1158/1940-6207.capr-11-0166 PMid:21778329 DOI: https://doi.org/10.1158/1940-6207.CAPR-11-0166

Sugimoto Y, Narumiya S. Prostaglandin E receptors. J Biol Chem. 2007;282(16):11613-7. https://doi.org/10.1074/jbc.r600038200 PMid:17329241 DOI: https://doi.org/10.1074/jbc.R600038200

Iqubal A, Syed MA, Haque MM, Najmi AK, Ali J, Haque SE. Effect of nerolidol on cyclophosphamide-induced bone marrow and hematologic toxicity in Swiss albino mice. Exp Hematol. 2020;82:24-32. https://doi.org/10.1016/j.exphem.2020.01.007 PMid:31987924 DOI: https://doi.org/10.1016/j.exphem.2020.01.007

Fisher JW, Hagiwara M. Effects of prostaglandins on erythropoiesis. Blood Cells. 1984;10(2-3):241-60. PMid:6543652

Estrov Z, Halperin DS, Coceani F, Freedman MH. Modulation of human marrow haematopoiesis by leucotrienes in vitro. Br J Haematol. 1988;69(3):321-7. https://doi.org/10.1111/j.1365-2141.1988.00295.x-i1 PMid:2841965 DOI: https://doi.org/10.1111/j.1365-2141.1988.tb02369.x

Miners JO. Drug interactions involving aspirin (acetylsalicylic acid) and salicylic acid. Clin Pharmacokinet. 1989;17(5):327-44. https://doi.org/10.2165/00003088-198917050-00003 DOI: https://doi.org/10.2165/00003088-198917050-00003

PMid:2573442

Cyclophosphamide 2021. Available from: https://www.go.drugbank.com/drugs/DB00531 [Last accessed on 2022 Jan 30].

Downloads

Published

2022-03-01

How to Cite

1.
Hashim I, Al-Attar Z, Hamdan SJ. Aspirin Protective Effect on Cyclophosphamide Induced Hematological Toxicity. Open Access Maced J Med Sci [Internet]. 2022 Mar. 1 [cited 2024 Nov. 21];10(A):1011-6. Available from: https://oamjms.eu/index.php/mjms/article/view/8505