The Proof of Quantum and Fuzzy Measures as Generalization of Measure That Does Not Generalize Each Other
DOI:
https://doi.org/10.3889/oamjms.2022.8516Keywords:
Measure, Quantum measure, Fuzzy measureAbstract
The studies on quantum and fuzzy theories by Planck and Zadeh, respectively, still continue presently. Based on the mathematical side, these two theories that directly related and become the basis for various studies, both theoretical and applied, are quantum and fuzzy measures. Although in the literature, these are measure generalizations but not substantiated by definition; therefore, the substance does not appear directly. Furthermore, there is also no discussion of the relationship between quantum and fuzzy measures on Boolean σ– algebra. This study accomplishes a proof based on the definition that both the quantum and the fuzzy measures are measure generalizations or do not reciprocally generalize; hence, the measure is the intersection of the two.
Downloads
Metrics
Plum Analytics Artifact Widget Block
References
Wattimena RA. Philosophy and Science. Indonesia: Grasindo; 2008.
Marsh GE. An Introduction to the Standard Model of Particle Physics for the Non-Specialist. Singapore: World Scientific; 2018. DOI: https://doi.org/10.1142/10779
Ter Haar D. On the Theory of the Energy Distribution Law of the Normal Spectrum. United Kingdom: Pergamon Press; 1967. p. 82. DOI: https://doi.org/10.1016/B978-0-08-012102-4.50013-9
Gudder S. Generalized measure theory. Found Phys. 1973;3(3):399-411. DOI: https://doi.org/10.1007/BF00708681
Sorkin RD. Quantum mechanics as quantum measure theory. Mod Phys Lett A. 1994;9(33):3119-27. DOI: https://doi.org/10.1142/S021773239400294X
Gudder S. Quantum measure and integration theory. J Math Phys. 2009;50:59. DOI: https://doi.org/10.1063/1.3267867
Gudder S. Quantum measure theory. Math Slovaca. 2010;60(5):681-700. DOI: https://doi.org/10.2478/s12175-010-0040-8
Zadeh LA. Fuzzy sets. Inf Control. 1965;8:338-53. DOI: https://doi.org/10.1016/S0019-9958(65)90241-X
Zadeh LA. Probability measures of fuzzy events. J Math Anal Appl. 1968;23:421-7. DOI: https://doi.org/10.1016/0022-247X(68)90078-4
Sugeno M. Theory of Fuzzy Integrals and its Applications. Japan: Tokyo Institute of Technology; 1974. 11. Wang Z. The autocontinuity of set function and the fuzzy integral. J Math Anal Appl. 1984;99:195-218. DOI: https://doi.org/10.1016/0022-247X(84)90243-9
Murofushi T, Sugeno M. An interpretation of fuzzy measures and the choquet integral as an integral with respect to a fuzzy measure. Fuzzy Sets Syst. 1989;29:201-27. DOI: https://doi.org/10.1016/0165-0114(89)90194-2
Chen L, Duan G, Wang S, Ma J. A choquet integral based fuzzy logic approach to solve uncertain multi-criteria decision making problem. Expert Syst Appl. 2020;149:1-12. DOI: https://doi.org/10.1016/j.eswa.2020.113303
Bezdek JC. FCM : The fuzzy c-means clustering algorithm. Comput Geosci. 1984;10(2):191-203. DOI: https://doi.org/10.1016/0098-3004(84)90020-7
Chung F, Lee T. Fuzzy Learning Vector Quantization. Nagoya, Japan: Proceedings of 1993 International Joint Confrence on Neral Networks; 1993. p. 2739-42.
Ibrahim OA, Member S, Keller JM, Fellow L, Bezdek JC, Fellow L. Evaluating evolving structure in streaming data with modified Dunn’s indices. IEEE Trans Emerg Top Comput Intell. 2019;5:1-12.
Dvurecenskij A, Chovanec F. Fuzzy quantum spaces and compatibility. Int J Theor Phys. 1988;27(9):1069-82. DOI: https://doi.org/10.1007/BF00674352
Piasecki K. Probability of fuzzy events defined as denumerable additivity measure. Fuzzy Sets Syst. 1985;17:271-84. DOI: https://doi.org/10.1016/0165-0114(85)90093-4
Duris V, Bartkova R, Tirpakova A. Several limit theorems on fuzzy quantum space. Mathematics. 2021;9:1-14. DOI: https://doi.org/10.3390/math9040438
Birkhoff G. Lattice Theory. New York: American Mathematical Society; 1948.
Gratzer G. General Lattice Theory. Berlin: Birkhause Verlag; 2007.
Jech T. Set Theory. Berlin, Germany: Springer; 2006.
Bogachev VI. Measure Theory. Vol. 1. Berlin, Germany: Springer Berlin Heidelberg; 2007. DOI: https://doi.org/10.1007/978-3-540-34514-5
Royden HL, Fitzpatrick PM. Real Analysis. United States: Prentice Hall; 2010.
Sugeno M. A way to Choquet calculus. IEEE Trans Fuzzy Syst. 2014;23(5):1-22. DOI: https://doi.org/10.1109/TFUZZ.2014.2362148
Downloads
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2022 Miftahul Fikri, Zuherman Rustam, Kurniawan Atmadja, Nurhadi Hadi (Author)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
http://creativecommons.org/licenses/by-nc/4.0