Pinctada Maxima Pearl Shells as a Promising Bone Graft Material in the World of Dentistry
DOI:
https://doi.org/10.3889/oamjms.2022.8529Keywords:
Bone graft, Bone morphogenetic protein, Bone remodeling, Hydroxyapatite, OsteoprotegerinAbstract
BACKGROUND: Pinctada maxima pearl shell contains inorganic and organic materials that have a bone-like basic structure that facilitates bone remodeling.
AIM: This study aimed to describe the effectiveness of Pinctada maxima pearl shells as bone graft material in the world of dentistry using an animal model.
METHODS: Research uses Pinctada maxima pearl shell that was processed into hydroxyapatite Pinctada maxima (HPM) powder. Chemical and surface characteristics of HPM were performed with X-ray fluorescence (XRF), Fourier transform infra-red (FTIR), and X-ray diffraction (XRD), respectively. Thirty male guinea pigs were randomly assigned into three groups: Negative control (NC), positive control, and HPM. After 14–21 days of observation, guinea pigs were sacrificed. Bone formation was seen through immunohistochemical examination of osteoprotegerin (OPG) and bone morphogenetic protein (BMP2) expression. Data were analyzed through Shapiro wills and analysis of variance with a significance level of 5%.
RESULTS: There was a high expression of OPG and BMP2 on days 14–21 in the HPM group when compared to the NC group with a significance level of 5%.
CONCLUSION: HPM powder can be used as a promising bone graft material in the world of dentistry.Downloads
Metrics
Plum Analytics Artifact Widget Block
References
Chapple IL, Van der Weijden F, Doerfer C, Herrera D, Shapira L, Polak D, et al. Primary prevention of periodontitis: Managing gingivitis. J Clin Periodontol. 2015;42(16):S71-6. https://doi.org/10.1111/jcpe.12366 PMid:25639826 DOI: https://doi.org/10.1111/jcpe.12366
Holick MF. Vitamin D deficiency. N Engl J Med. 2007;357(3):266-81. https://doi.org/10.1056/NEJMra070553 PMid:17634462 DOI: https://doi.org/10.1056/NEJMra070553
Kumar P, Vinitha B, Fathima G. Bone grafts in dentistry. J Pharm Bioallied Sci. 2013;5 Suppl 1:S125-7. https://doi.org/10.4103/0975-7406.113312 PMid:23946565 DOI: https://doi.org/10.4103/0975-7406.113312
Balaji VR, Manikandan D, Ramsundar A. Bone grafts in periodontics. Matrix Sci Med. 2020;4:57-63. DOI: https://doi.org/10.4103/MTSM.MTSM_2_19
Sheikh Z, Hamdan N, Ikeda Y, Grynpas M, Ganss B, Glogauer M. Natural graft tissues and synthetic biomaterials for periodontal and alveolar bone reconstructive applications: A review. Biomater Res. 2017;21(9):1-20. https://doi.org/10.1186/s40824-017-0095-5 PMid:28593053 DOI: https://doi.org/10.1186/s40824-017-0095-5
Rao SM, Ugale GM, Warad SB. Bone morphogenetic proteins: Periodontal regeneration. N Am J Med Sci. 2013;5(3):161-8. https://doi.org/10.4103/1947-2714.109175 PMid:23626951 DOI: https://doi.org/10.4103/1947-2714.109175
Simic P, Vukicevic S. Bone morphogenetic proteins: From developmental signals to tissue regeneration. Conference on bone morphogenetic proteins. EMBO Rep. 2007;8:327-31. https://doi.org/10.1038/sj.embor.7400943 PMid:17363970 DOI: https://doi.org/10.1038/sj.embor.7400943
Walsh MC, Choi Y. Biology of the RANKL-RANK-OPG system in immunity, bone, and beyond. Front Immunol. 2014;5:511. https://doi.org/10.3389/fimmu.2014.00511 PMid:25368616 DOI: https://doi.org/10.3389/fimmu.2014.00511
Sakkas A, Wilde F, Heufelder M, Winter K, Schramm A. Autogenous bone grafts in oral implantology-is it still a “gold standard”? A consecutive review of 279 patients with 456 clinical procedures. Int J Implant Dent. 2017;3(1):23. DOI: https://doi.org/10.1186/s40729-017-0084-4
Green DW, Lai WF, Jung HS. Evolving marine biomimetics for regenerative dentistry. Mar Drugs. 2014;12(5):2877-912. https://doi.org/10.3390/md12052877 PMid:24828293 DOI: https://doi.org/10.3390/md12052877
Sutarno S, Setyawan AD. Indonesia’s biodiversity: the loss and management efforts to ensure the sovereignty of the nation. Pros Sem Nas Masy Biodive Indones. 2015;1(1):1-13.
Gerhard EM, Wang W, Li C, Guo J, Ozbolat IT, Rahn KM, et al. Design strategies and applications of nacre-based biomaterials. Acta Biomater. 2017;54:21-34. https://doi.org/10.1016/j.actbio.2017.03.003 PMid:28274766 DOI: https://doi.org/10.1016/j.actbio.2017.03.003
Alakpa EV, Burgess KE, Chung P, Riehle MO, Gadegaard N, Dalby MJ, et al. Nacre topography produces higher crystallinity in bone than chemically induced osteogenesis. ACS Nano. 2017;11(7):6717-27. https://doi.org/10.1021/acsnano.7b01044 PMid:28665112 DOI: https://doi.org/10.1021/acsnano.7b01044
Aghaloo T, Tencati E, Hadaya D. Biomimetic Enhancement of bone graft reconstruction. Oral Maxillofac Surg Clin North Am. 2019;31(2):193-205. https://doi.org/10.1016/j.coms.2018.12.001 PMid:30833125 DOI: https://doi.org/10.1016/j.coms.2018.12.001
Graham SM, Leonidou A, Aslam-Pervez N, Hamza A, Panteliadis P, Heliotis M, et al. Biological therapy of bone defects: The immunology of bone allo-transplantation. Expert Opin Biol Ther. 2010;10(6):885-901. https://doi.org/10.1517/14712598.2010.481669 PMid:20415596 DOI: https://doi.org/10.1517/14712598.2010.481669
Laurencin C, Khan Y, El-Amin SF. Bone graft substitutes. Expert Rev Med Devices. 2006;3(1):49-57. https://doi.org/10.1586/17434440.3.1.49 PMid:16359252 DOI: https://doi.org/10.1586/17434440.3.1.49
Coringa R, de Sousa EM, Botelho JN, Diniz RS, de Sá JC, da Cruz MC, et al. Bone substitute made from a Brazilian oyster shell functions as a fast stimulator for bone-forming cells in an animal model. PLoS One. 2018;13(6):1-13. https://doi.org/10.1371/journal.pone.0198697 PMid:29870546 DOI: https://doi.org/10.1371/journal.pone.0198697
Oktawati S, Mappangara S, Chandra H, Achmad H, Ramadhan SR, Dwipa AG, et al. Effectiveness nacre pearl shell (Pinctada Maxima) as bone graft for periodontal bone remodeling. Ann RSCB. 2021;25(3):8663-78.
Zhang G, Brion A, Willemin AS, Piet MH, Moby V, Bianchi A, et al. Nacre, a natural, multi-use, and timely biomaterial for bone graft substitution. J Biomed Mater Res. 2017;105(2):662-71. https://doi.org/10.1002/jbm.a.35939 PMid:27750380 DOI: https://doi.org/10.1002/jbm.a.35939
Brundavanam RK, Fawcett D, Poinern GE. Synthesis of a bone like composite material derived from waste pearl oyster shells for potential bone tissue bioengineering applications. Int J Res Med Sci. 2017;5(6):2454. DOI: https://doi.org/10.18203/2320-6012.ijrms20172428
Ni M, Ratner BD. Nacre surface transformation to hydroxyapatite in a phosphate buffer solution. Biomaterials. 2003;24(23):4323-31. https://doi.org/10.1016/s0142-9612(03)00236-9 PMid:12853263 DOI: https://doi.org/10.1016/S0142-9612(03)00236-9
Arisaputra T, Yelmida A, Akbar F. Sintesis hidroksiapatit dari precipitated calcium carbonate (PCC) cangkang telur itik melalui proses pengendapan dengan variasi rasio Ca/P dan kecepatan pengadukan. Jom FTEKNIK. 2018;5(1):1-4.
Purwasasmita BS, Gultom RS. Sintesis dan karakterisasi serbuk hidroksiapatit skala sub-mikron menggunakan metode presipitasi. J Bionatura. 2008;10(2):155-67.
Rahayu S, Kurniawidi DW, Gani A. Pemanfaatan limbah cangkang mutiara (Pinctada maxima) sebagai sumber hidroksiapatit. J Pend Fis Teknol. 2018;4(2):226-31. DOI: https://doi.org/10.29303/jpft.v4i2.839
Chiapasco M, Zaniboni M, Boisco M. Augmentation procedures for the rehabilitation of deficient edentulous ridges with oral implants. Clin Oral Impl Res. 2006;7(2):136-59. https://doi.org/10.1111/j.1600-0501.2006.01357.x PMid:16968389 DOI: https://doi.org/10.1111/j.1600-0501.2006.01357.x
Pretel H, Lizarelli RF, Ramalho LT. Effect of low-level laser therapy on bone repair: Histological study in rats. Lasers Surg Med. 2007;39(10):788-96. https://doi.org/10.1002/lsm.20585 PMid:18081142 DOI: https://doi.org/10.1002/lsm.20585
Stanciu GA, Sandulescu I, Savu B, Stanciu SG, Paraskevopoulos KM, Chatzistavrou X, et al. Investigation of the Hydroxyapatite Growth on Bioactive Glass Surface. J Biomed Pharm Eng. 2007;1(1):34-9.
Abbas W. Sintesis dan karakterisasi pasta injectable bone substitute iradiasi berbasis hidroksiapatit. A Sci J Appl Isot Radiat. 2011;7(2):73-82.
Amin A, Ulfah M. Sintesis dan karakterisasi komposit hidroksiapatit dari tulang ikan lamuru (Sardinella longiceps)- kitosan sebagai bone filler. JF FIK UINAM. 2017;5(1):9-15.
Li Y, Toraldo G, Li A, Yang X, Zhang H, Qian WP, et al. B cells and T cells are critical for the preservation of bone homeostasis and attainment of peak bone mass in vivo. Blood. 2007;109(9):3839-48. https://doi.org/10.1182/blood-2006-07-037994 PMid:17202317 DOI: https://doi.org/10.1182/blood-2006-07-037994
Hofbauer L, Scoppet M. Clinical implications of the osteoprotegerin/RANKL/RANK system for bone and vascular diseases. JAMA J Am Med Assoc. 2004;292(4):490-5. https://doi.org/10.1001/jama.292.4.490 PMid:15280347 DOI: https://doi.org/10.1001/jama.292.4.490
Boyce BF, Xing L. Functions of RANKL/RANK/OPG in bone modeling and remodeling. Arch Biochem Biophys. 2008;473(2):139-46. https://doi.org/10.1016/j.abb.2008.03.018 PMid:18395508 DOI: https://doi.org/10.1016/j.abb.2008.03.018
Faßbender M, Minkwitz S, Strobel C, Schmidmaier G, Wildemann B. Stimulation of bone healing by sustained bone morphogenetic protein 2 (BMP-2) delivery. Int J Mol Sci. 2014;15(5):8539-52. https://doi.org/10.3390/ijms15058539 PMid:24830556 DOI: https://doi.org/10.3390/ijms15058539
Wang JJ, Chen JT, Yang CL. Effect of soluble matrix of nacre on bone morphogenetic protein-2 and Cbfa1 gene expression in rabbit marrow mesenchymal stem cell. Nan Fang Yi Ke Da Xue Xue Bao. 2007;27(12):1838-40. PMid:18158997
Almeida MJ, Millet C, Peduzzi J, Pereira L, Haigle J, Barthélemy M, et al. Effect of water-soluble matrix fraction extracted from the nacre of Pinctada maxima on the alkaline phosphatase activity of cultured fibroblasts. J Exp Zool. 2000;288(4):327-34. DOI: https://doi.org/10.1002/1097-010X(20001215)288:4<327::AID-JEZ5>3.0.CO;2-#
Rousseau M, Mouries LP, Almeida MJ, Millet C, Lopez E. The water-soluble matrix fraction from the nacre of Pinctada maxima produces earlier mineralization of MC3T3-E1 mouse pre-osteoblasts. Comp Biochem Physiol B Biochem Mol Biol. 2003;135(1):1-7. PMid:12781967 DOI: https://doi.org/10.1016/S1096-4959(03)00032-0
Millet C, Berland S, Lamghari M. Conservation of signal molecules involved in biomineralisation control in calcifying matrices of bone and shell. Comptes Rendus Palevol. 2004;3(6-7):493-501. DOI: https://doi.org/10.1016/j.crpv.2004.07.010
Westbroek P, Marin F. A marriage of bone and nacre. Nature. 1998;392:861-2. https://doi.org/10.1038/31798 PMid:9582064 DOI: https://doi.org/10.1038/31798
Green DW, Kwon HJ, Jung HS. Osteogenic potency of nacre on human mesenchymal stem cells. Mol Cells. 2015;38(3):267-72. https://doi.org/10.14348/molcells.2015.2315 PMid:25666352 DOI: https://doi.org/10.14348/molcells.2015.2315
Downloads
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2022 M. Hendra Chandha, Surijana Mappangara, Harun Achmad, Sri Oktawati, Sitti Raoda Juanita Ramadhan, Muhammad Yudin, Gustivanny Dwipa Asri (Author)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
http://creativecommons.org/licenses/by-nc/4.0