The Association between NTproBNP Biomarker Levels and Clinical Symptoms of Cardiac Septal Defects in Children

Authors

  • Ria Nova Department of Child Health, Division of Pediatric Cardiology, Faculty of Medicine, Universitas Sriwijaya, Dr. Moh Hoesin Hospital, Palembang, Indonesia
  • Sukman Tulus Putra Department of Child Health, Division of Pediatric Cardiology, Faculty of Medicine, Universitas Indonesia, Dr. Cipto Mangunkusumo Hospital, Jakarta, Indonesia
  • Siti Nurmaini Intelligent System Research Group, Faculty of Computer Science, Universitas Sriwijaya, Palembang, Indonesia
  • Radiyati Umi Partan Department of Medicine, Faculty of Medicine, Universitas Sriwijaya, Dr. Moh Hoesin Hospital, Palembang, Indonesia

DOI:

https://doi.org/10.3889/oamjms.2022.8531

Keywords:

NTproBNP, Clinical symptoms, Cardiac septal defect

Abstract

BACKGROUND: In a cardiac septal defect, there is left-to-right shunt at the atrial, ventricle level, or both. This causes clinical symptoms of heart failure, pulmonary hypertension, or malnutrition. NTproBNP is synthesized and released into the circulation by the ventricular myocytes in response to pressure, volume overload, and increase in myocardial wall stress.

AIM: This study aims to evaluate relationship between NTproBNP levels and clinical symptoms of cardiac septal defect.

PATIENTS AND METHODS: This cross-sectional study was conducted from April to August 2021 at Moh Husin Hospital, Palembang, Indonesia. The presence of heart failure was determined using the modified Ross score. Nutritional status was defined on anthropometric measurement, and data were plot to weight to height Z-score chart. The presence of pulmonary hypertension was measured by Doppler echocardiography.

RESULTS: A total of 75 cardiac septal defect patients were included in this study. A similar plasma NTproBNP of 554 pg/ml was determined as the cut-off point for predicting heart failure and pulmonary hypertension, with a sensitivity of 57.1% and 54.5%, specificity of 85% and 80.9%, with area under receiver operating characteristic (ROC) of 0.706 and 0.716 respectively. For malnutrition, plasma NTproBNP of 429 pg/ml was found to have sensitivity, specificity, and area under ROC of 54.3%, 77.5%, and 0.640, respectively. The multivariate logistic regression showed that NTproBNP >554 pg/ml and >429 pg/ml had a 6-fold higher odds of having heart failure, an 8-fold higher odds of having pulmonary hypertension, and a 4-fold odds of having malnutrition.

CONCLUSION: NTproBNP is a biomarker that is strong enough to predict clinical symptoms of heart failure, pulmonary hypertension, and malnutrition in children with cardiac septal defect.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

Puri K, Allen HD, Qureshi AM. Congenital heart disease. Pediatr Rev. 2017;38(10):471-86. https://doi.org/10.1542/pir.2017-0032 PMid:28972050 DOI: https://doi.org/10.1542/pir.2017-0032

Thiene G, Frescura C. Anatomical and pathophysiological classification of congenital heart disease. Cardiovasc Pathol. 2010;19(5):259-74. https://doi.org/10.1016/j.carpath.2010.02.006 PMid:20466566 DOI: https://doi.org/10.1016/j.carpath.2010.02.006

Fleishman CE, Tugertimur A. Clinical manifestations, pathophysiology, and diagnosis of atrioventricular (AV) canal defects. Uptodate. 2020;21:1-38.

Marian AJ, Hinton RB, Ware SM. Heart failure in pediatric patients with congenital heart disease. Circ Res. 2017;120(6):978-94. https://doi.org/10.1161/CIRCRESAHA.116.308996 PMid:28302743 DOI: https://doi.org/10.1161/CIRCRESAHA.116.308996

Stout KK, Broberg CS, Book WM, Cecchin F, Chen JM, Dimopoulos K, et al. AHA scientific statement chronic heart failure in congenital heart disease a scientific statement from the American Heart Association. Circulation. 2016;133(8):770-801. DOI: https://doi.org/10.1161/CIR.0000000000000352

Nashat H, Montanaro C, Li W, Kempny A, Wort SJ, Gatzoulis MA, et al. Atrial septal defects and pulmonary arterial hypertension. J Thorac Dis. 2018;10(4):2953-65. https://doi.org/10.21037/jtd.2018.08.92 PMid:30305956 DOI: https://doi.org/10.21037/jtd.2018.08.92

Pascall E, Tulloh R. Pulmonary hypertension in congenital heart disease. Futur Cardiol. 2018;14(4):343-53. https://doi.org/10.2217/fca-2017-0065 PMid:29792339 DOI: https://doi.org/10.2217/fca-2017-0065

Blasquez A, Clouzeau H, Fayon M, Mouton JB, Thambo JB, Enaud R, et al. Evaluation of nutritional status and support in children with congenital heart disease. Eur J Clin Nutr. 2016;70(4):528-31. http://doi.org/10.1038/ejcn.2015.209 PMid:26695725 DOI: https://doi.org/10.1038/ejcn.2015.209

Tabib A, Aryafar M, Ghadrdoost B. Prevalence of malnutrition in children with congenital heart disease. J Compr Pediatr. 2019;10(4):e84274. https://doi.org/10.5812/compreped.84274 DOI: https://doi.org/10.5812/compreped.84274

Zhang M, Wang L, Huang R, Sun C, Bao N, Xu Z. Risk factors of malnutrition in Chinese children with congenital heart defect. BMC Pediatr. 2020;20(1):213. https://doi.org/10.1186/s12887-020-02124-7 PMid:32404077 DOI: https://doi.org/10.1186/s12887-020-02124-7

Batte A, Lwabi P, Lubega S, Kiguli S, Otwombe K, Chimoyi L, et al. Wasting, underweight and stunting among children with congenital heart disease presenting at Mulago hospital, Uganda. BMC Pediatr. 2017;17(1):10. http://doi.org/10.1186/s12887-017-0779-y PMid:28077108 DOI: https://doi.org/10.1186/s12887-017-0779-y

Sugimoto M, Kuwata S, Kurishima C, Kim JH, Iwamoto Y, Senzaki H. Cardiac biomarkers in children with congenital heart disease. World J Pediatr. 2015;11(4):309-15. https://doi.org/10.1007/s12519-015-0039-x PMid:26454435 DOI: https://doi.org/10.1007/s12519-015-0039-x

Taylor KS, Verbakel JY, Feakins BG, Price CP, Perera R, Bankhead C, et al. Diagnostic accuracy of point-of-care natriuretic peptide testing for chronic heart failure in ambulatory care: Systematic review and meta-analysis. BMJ. 2018;361:k1450. https://doi.org/10.1136/bmj.k1450 PMid:29785952 DOI: https://doi.org/10.1136/bmj.k1450

Albakri A. Heart failure in congenital heart disease: A review of clinical status and meta-analysis of diagnostic value of serum natriuretic peptides, and medical and device therapies. Med Clin Arch. 2018;2(4):1-17. DOI: https://doi.org/10.15761/MCA.1000141

Ross RD. The ross classification for heart failure in children after 25 years: A review and an age-stratified revision. Pediatr Cardiol. 2012;33(8):1295-300. https://doi.org/10.1007/s00246-012-0306-8 PMid:22476605 DOI: https://doi.org/10.1007/s00246-012-0306-8

WHO Child Growth Standards. Dev Med Child Neurol. 2009;51(12):1002. DOI: https://doi.org/10.1111/j.1469-8749.2009.03503.x

Brompton R, Road HE. Quantitative Doppler echocardiography. BJA Educ. 2016;16(2):46-52. DOI: https://doi.org/10.1093/bjaceaccp/mkv015

Koura HM, Abdalla NM, Ibrahim MH, Hashish MM, Zaki SM. NT-proBNP in children with left to right shunt and dilated cardiomyopathy. Iran J Pediatr. 2016;26(3):e4485. https://doi.org/10.5812/ijp.4485 PMid:27617070 DOI: https://doi.org/10.5812/ijp.4485

Kung AG, Triedman JK. Pathophysiology of left-to-right shunts. UptoDate. 2020 ;6:1-16.

Ozyurt A, Baykan A, Argun M, Pamukcu O, Uzum K, Narin F, et al. Does N-terminal pro-brain natriuretic peptide correlate with measured shunt fraction in children with septal defects? Cardiol Young. 2016;26(3):469-76. https://doi.org/10.1017/S1047951115000438 PMid:25858635 DOI: https://doi.org/10.1017/S1047951115000438

Lin CW, Zeng XL, Jiang SH, Wu T, Wang JP, Zhang JF, et al. Role of the NT-proBNP level in the diagnosis of pediatric heart failure and investigation of novel combined diagnostic criteria. Exp Ther Med. 2013;6(4):995-9. https://doi.org/10.3892/etm.2013.1250 PMid:24137304 DOI: https://doi.org/10.3892/etm.2013.1250

Isah IA, Sadoh WE, Iduoriyekemwen NJ. Usefulness of amino terminal pro-B-type natriuretic peptide in evaluating children with cardiac failure. Cardiovasc Diagn Ther. 2017;7(4):380-8. https://doi.org/10.21037/cdt.2017.05.08 PMid:28890874 DOI: https://doi.org/10.21037/cdt.2017.05.08

Constantine A, Dimopoulos K, Opotowsky AR. Congenital heart disease and pulmonary hypertension. Cardiol Clin. 2020;38(3):445-56. https://doi.org/10.1016/j.ccl.2020.04.008 PMid:32622496 DOI: https://doi.org/10.1016/j.ccl.2020.04.008

Deng X, Jin B, Li S, Li Y, Zhou H, Wu Y, et al. Guideline implementation and early risk assessment in pulmonary arterial hypertension associated with congenital heart disease: A retrospective cohort study. Clin Respir J. 2019;13(11):693-9. https://doi.org/10.1111/crj.13076 PMid:31419027 DOI: https://doi.org/10.1111/crj.13076

Ducros J, Larifla L, Merault H, Foucan L. NT-proBNP, cardiometabolic risk factors, and nutritional status in hemodialysis patients. Int J Nephrol. 2017;2017:1312547. https://doi.org/10.1155/2017/1312547 PMid:29075534 DOI: https://doi.org/10.1155/2017/1312547

Kim HL, Kim MA, Oh S, Choi DJ, Han S, Jeon ES, et al. The impact of body mass index on the prognostic value of N-terminal proB-type natriuretic peptide in patients with heart failure: An analysis from the Korean Heart Failure (KorHF) Registry. Int J Heart Fail. 2020;2(1):45-54. https://doi.org/10.36628/ijhf.2019.0005 DOI: https://doi.org/10.36628/ijhf.2019.0005

Downloads

Published

2022-02-25

How to Cite

1.
Nova R, Putra ST, Nurmaini S, Partan RU. The Association between NTproBNP Biomarker Levels and Clinical Symptoms of Cardiac Septal Defects in Children. Open Access Maced J Med Sci [Internet]. 2022 Feb. 25 [cited 2024 Apr. 23];10(B):1047-51. Available from: https://oamjms.eu/index.php/mjms/article/view/8531