Environmental Factors linked to the Presence of Aedes aegypti Larvae and the Prevalence of Dengue Hemorrhagic Fever
DOI:
https://doi.org/10.3889/oamjms.2022.8533Keywords:
Dengue hemorrhagic fever, Prevalence, Environmental factors, Temperature, Precipitation, Humidity, Vector presenceAbstract
This study aims to examine the effect of climate and the presence of Aedes aegypti larvae on the prevalence of Dengue Hemorrhagic Fever (DHF) in Bukittinggi. In particular, the study was conducted in order to reduce the prevalence of DHF through vector control (Aedes aegypti) guided by the mosquito larvae free rate by proposing a model for environmental management in an Aedes aegypti larva-free area in Bukittinggi. Rainfall, air temperature, and humidity in 2015-2019 in Bukittinggi were measured to analyze their effect on the prevalence of dengue fever. Samples of data on the prevalence of dengue cases were carried out in total population against data on the prevalence of dengue cases, which amounted to 686 cases, and data on mosquito larvae free rates during 2015-2019. By using Pearson correlation analysis, the results show that the average air temperature in Bukittinggi over the last 5 years allows mosquitoes to survive because they have an average air temperature that functions as an optimum breeding vector. High rainfall can be expected to increase the breeding places of the Aedes aegypti so that the population will increase also has an impact on increasing cases in that month and several months later. Furthermore, the results confirm that there is no significant relationship and also no correlation between physical environmental factors, such as air temperature, humidity, and rainfall with the prevalence of dengue cases in Bukittinggi during the 2015-2019 period. Based on the pattern of distribution of DHF cases in Bukittinggi during the 2015-2019 period, controlling the prevalence of DHF cases needs to focus on activities in areas/villages that are endemic for DHF, without neglecting areas/villages where the prevalence of DHF cases is low, both at the temperature of the air and the mosquitoes will cause dengue fever experience optimal development, low, medium, and high rainfall, as well as in humidity where mosquitoes will experience ideal development.
Downloads
Metrics
Plum Analytics Artifact Widget Block
References
Nadesul H. Easy Ways to Beat Dengue Fever. Jakarta: Kompas Media Nusantara; 2007.
Hadid FN, Angela F, Kalesaran K. Dengue Hemorrhagic Fever (DHF) with the presence of Aedes Sp larvae in the Community in the Working Area of the Minanga Health Center, Manado City. United States: CDC; 2016.
Prasetyowati H, Astuti EP, Widawati M. Factors related to the presence of Aedes aegypti larvae in endemic areas of dengue hemorrhagic fever (DHF) West Jakarta. Balaba. 2017;2017:115-24. DOI: https://doi.org/10.22435/blb.v13i2.265
Nurrochmawati I, Dharmawan R. Biological, physical, social, and environmental factors associated with dengue hemorrhagic fever in Nganjuk, East Java. J Epidemiol Public Health. 2017;2(2):93-105. DOI: https://doi.org/10.26911/jepublichealth.2017.02.02.01
Medeiros-Sousa AR, de Oliveira-Christe R, Camargo AA, Scinachi CA, Milani GM, Urbinatti PR, et al. Influence of water’s physical and chemical parameters on mosquito (Diptera: Culicidae) assemblages in larval habitats in urban parks of São Paulo, Brazil. Acta Trop. 2020;205:105394. https://doi.org/10.1016/j.actatropica.2020.105394 PMid:32070677 DOI: https://doi.org/10.1016/j.actatropica.2020.105394
Dinata A, Dwantara PW. Characteristics of the physical, biological, and social environment in the DHF endemic area of Banjar City in 2011. J Health Ecol. 2012;11(4):315-26.
Getachew D, Tekie H, Gebre-Michael T, Balkew M, Mesfin A. Breeding sites of Aedes aegypti: Potential dengue vectors in Dire Dawa, East Ethiopia. Interdiscip Perspect Infect Dis. 2015;2015:706276. https://doi.org/10.1155/2015/706276 PMid:26435712 DOI: https://doi.org/10.1155/2015/706276
Fidayanto R, Susanto H, Yohanan A, Yudhastuti R. Dengue hemorrhagic fever control model. Kesmas Natl Public Health J. 2013;7(11):522-8. DOI: https://doi.org/10.21109/kesmas.v7i11.366
Spiegel J, Bennett S, Hattersley L, Hayden MH, Kittayapong P, Nalim S, et al. Barriers and bridges to prevention and control of dengue: The need for a social-ecological approach. EcoHealth. 2005;2(4):273-90. DOI: https://doi.org/10.1007/s10393-005-8388-x
Darwin A, Pujiyanti A, Heriyanto B. An integrated vector control model for dengue hemorrhagic fever in Salatiga city. J Vectors. 2013;5:1-43.
Halasa YA, Shepard DS, Zeng W. Economic cost of dengue in Puerto Rico. Am J Trop Med Hyg. 2012;86(5):745-52. https://doi.org/10.4269/ajtmh.2012.11-0784 PMid:22556069 DOI: https://doi.org/10.4269/ajtmh.2012.11-0784
Bukittinggi City Health Office. Strategic Plan 2016-2021. Bukittinggi: Bukittinggi City Health Office; 2016.
Kurniawati NT, Yudhastuti R. Relationship between climate and larvae-free rate with the incidence of dengue hemorrhagic fever in Putat Jaya Public Health Center. Husada Media Health Sci J. 2016;5(2):157-66. DOI: https://doi.org/10.33475/jikmh.v5i2.175
Figueroa DP, Scott S, Hamilton-West C, González CR, Canals M. Mosquitoes: Disease vectors in context of climate change in Chile. Parasitol Latinoam. 2015;64(2):42-53.
Alizkan U. Correlation analysis of air humidity against dengue fever epidemic that occurs in serang regency and city. Gravity Sci J Phys Res Learn. 2017;3(1):1-8.
Sumi A, Telan EF, Chagan-Yasutan H, Piolo MB, Hattori T, Kobayashi N. Effect of temperature, relative humidity and rainfall on dengue fever and leptospirosis infections in Manila, the Philippines. Epidemiol Infect. 2017;145(1):78-86. https://doi.org/10.1017/S095026881600203X PMid:27608858 DOI: https://doi.org/10.1017/S095026881600203X
Aldrian E, Karmini M, Budiman B. Adaptation and mitigation of climate change in Indonesia. Center for Climate Change and Air Quality, Deputy for Climatology, Meteorology. Jakarta: Climatology and Geophysics Agency; 2011.
Valdez LD, Sibona GJ, Condat CA. Impact of rainfall on Aedes aegypti populations. Ecol Model. 2018;385:96-105. DOI: https://doi.org/10.1016/j.ecolmodel.2018.07.003
Nisaa A. Correlation between rainfall factors and DHF incidences in 2010-2014 in Karanganyar regency. Ikesma. 2018;14(1):25-33. DOI: https://doi.org/10.19184/ikesma.v14i1.10404
Dini AM, Fitriany RN, Wulandari RA. Climatic factors and incidence rates of dengue hemorrhagic fever in Serang regency. So Health. 2010;14(1):31-8. DOI: https://doi.org/10.7454/msk.v14i1.644
Xu HY, Fu X, Lee LK, Ma S, Goh KT, Wong J, et al. Statistical modeling reveals the effect of absolute humidity on dengue in Singapore. PLoS Negl Trop Dis. 2014;8(5):e2805. https://doi.org/10.1371/journal.pntd.0002805 PMid:24786517 DOI: https://doi.org/10.1371/journal.pntd.0002805
Wu PC, Lay JG, Guo HR, Lin CY, Lung SC, Su HJ. Higher temperature and urbanization affect the spatial patterns of dengue fever transmission in subtropical Taiwan. Sci Total Environ. 2009;407(7):2224-33. DOI: https://doi.org/10.1016/j.scitotenv.2008.11.034
Chen SC, Hsieh MH. Modeling the transmission dynamics of dengue fever: Implications of temperature effects. Sci Total Environ. 2012;431:385-91. https://doi.org/10.1016/j.scitotenv.2012.05.012 PMid:22705874 DOI: https://doi.org/10.1016/j.scitotenv.2012.05.012
Li Y, Dou Q, Lu Y, Xiang H, Yu X, Liu S. Effects of ambient temperature and precipitation on the risk of dengue fever: A systematic review and updated meta-analysis. Environ Res. 2020;191:110043. https://doi.org/10.1016/j.envres.2020.110043 PMid:32810500 DOI: https://doi.org/10.1016/j.envres.2020.110043
Brunkard JM, Cifuentes E, Rothenberg SJ. Assessing the roles of temperature, precipitation, and ENSO in dengue re-emergence on the Texas-Mexico border region. Salud Pública Méx. 2008;50(3):227-34. https://doi.org/10.1590/s0036-36342008000300006 PMid:18516370 DOI: https://doi.org/10.1590/S0036-36342008000300006
Chen MJ, Lin CY, Wu YT, Wu PC, Lung SC, Su HJ. Effects of extreme precipitation to the distribution of infectious diseases in Taiwan, 1994-2008. PLoS One. 2012;7(6):e34651. https://doi.org/10.1371/journal.pone.0034651 PMid:22737206 DOI: https://doi.org/10.1371/journal.pone.0034651
Colón-González FJ, Lake IR, Bentham G. Climate variability and dengue fever in warm and humid Mexico. Am J Trop Med Hyg. 2011;84(5):757. https://doi.org/10.4269/ajtmh.2011.10-0609 PMid:21540386 DOI: https://doi.org/10.4269/ajtmh.2011.10-0609
Wu X, Lang L, Ma W, Song T, Kang M, He J, et al. Non-linear effects of mean temperature and relative humidity on dengue incidence in Guangzhou, China. Sci Total Environ. 2018;628:766-71. https://doi.org/10.1016/j.scitotenv.2018.02.136 PMid:29454216 DOI: https://doi.org/10.1016/j.scitotenv.2018.02.136
Alkhaldy I. Modelling the association of dengue fever cases with temperature and relative humidity in Jeddah, Saudi Arabia-a generalised linear model with break-point analysis. Acta Trop. 2017;168:9-15. https://doi.org/10.1016/j.actatropica.2016.12.034 PMid:28069326 DOI: https://doi.org/10.1016/j.actatropica.2016.12.034
Bouzid M, Colón-González FJ, Lung T, Lake IR, Hunter PR. Climate change and the emergence of vector-borne diseases in Europe: Case study of dengue fever. BMC Public Health. 2014;14(1):1-2. https://doi.org/10.1186/1471-2458-14-781 PMid:25149418 DOI: https://doi.org/10.1186/1471-2458-14-781
Nakhapakorn K, Tripathi NK. An information value based analysis of physical and climatic factors affecting dengue fever and dengue haemorrhagic fever incidence. Int J Health Geographics. 2005;4(1):1-3. https://doi.org/10.1186/1476-072X-4-13 PMid:15943863 DOI: https://doi.org/10.1186/1476-072X-4-13
Downloads
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2022 Nurdin Nurdin, Yusni Ikhwan Siregar, Mubarak Mubarak, Wijayantono Wijayantono (Author)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
http://creativecommons.org/licenses/by-nc/4.0