Application of Fluorescent In Situ Hybridization for Quick Identification of Microorganisms from Positive Blood Cultures
DOI:
https://doi.org/10.3889/oamjms.2022.8551Keywords:
Blood cultures, FISH, Microorganisms, Bacteremia, FungemiaAbstract
AIM: The aim of this study was to evaluate the diagnostic potential of the fluorescent in situ hybridization (FISH) method for quick identification of microorganisms from positive blood cultures.
MATERIALS AND METHODS: QuickFISH BC is a multicolor, qualitative nucleic acid hybridization assay using specific fluorescent-labeled probes for identification of Gram-positive bacteria (S. aureus, Coagulase-negative Staphylococcus spp. – CoNS, E. faecalis, and E. faecium); Gram-negative bacteria (E. coli, P. aeruginosa, and K. pneumoniaе), and fungi (C. albicans, C. tropicalis, and C. glabrata). This method applied to 72 positive blood cultures obtained from patients admitted at the University Hospital St. George – Plovdiv. A preliminary selection based on Gram staining was performed before the application of the FISH test. All microorganisms were subject to identification by routine biochemical tests, semi-automated and automated systems as well. Statistical data processing included descriptive statistics, nonparametric analysis for testing hypotheses by SPSS v. 22.0, and Microsoft Excel software. p < 0.05 was considered statistically significant.
RESULTS: FISH detected microorganisms in 63 (87.5%) positive blood cultures, whereas no fluorescent signal was observed in 9 (12.5%). The latter was because not all the microorganisms we identified are included in the test spectrum, for example – Enterobacter spp. and Acinetobacter spp. By FISH, we found S. aureus in 10 (15.9%) cases, CoNS in 20 (31.6%), E. faecalis in 4 (6.4%), and E. faecium in 4 (6.4%). E. coli (n = 7; 11.1%) was the leading cause of bacteremia among Gram-negative bacteria, whereas C. albicans predominated (n = 4; 6.4%) among fungi.
CONCLUSION: QuickFISH BC is a rapid and accurate screening method for the identification of some of the most frequent pathogens causing bacteremia. This enables the initiation of the early and adequate antimicrobial therapy. The lack of pathogen identification from positive blood cultures using this method implies the need to continue identification with other tests.Downloads
Metrics
Plum Analytics Artifact Widget Block
References
Infectious Diseases Society of America (IDSA); Spellberg B, Blaser M, Guidos RJ, Boucher HW, Bradley JS, et al. Combating antimicrobial resistance: Policy recommendations to save lives. Clin Infect Dis. 2011;52 Suppl 5:S397-428. https://doi.org/10.1093/cid/cir153 PMid:21474585 DOI: https://doi.org/10.1093/cid/cir153
Skogberg K, Lyytikäinen O, Ollgren J, Nuorti JP, Ruutu P. Population-based burden of bloodstream infections in Finland. Clin Microbiol Infect. 2012;18(6):E170-6. https://doi.org/10.1111/j.1469-0691.2012.03845.x PMid:22512663 DOI: https://doi.org/10.1111/j.1469-0691.2012.03845.x
Holmbom M, Giske CG, Fredrikson M, Östholm Balkhed Å, Claesson C, Nilsson LE, et al. 14-Year survey in a Swedish county reveals a pronounced increase in bloodstream infections (BSI). Comorbidity – An independent risk factor for both BSI and mortality. PLoS One. 2016;11(11):e0166527. https://doi.org/10.1371/journal.pone.0166527 PMid:27835663 DOI: https://doi.org/10.1371/journal.pone.0166527
Goto M, Al-Hasan MN. Overall burden of bloodstream infection and nosocomial bloodstream infection in North America and Europe. Clin Microbiol Infect. 2013;19(6):501-9. https://doi.org/10.1111/1469-0691.12195 PMid:23473333 DOI: https://doi.org/10.1111/1469-0691.12195
Bryant S, Almahmoud I, Pierre I, Bardet J, Touati S, Maubon D, et al. Evaluation of microbiological performance and the potential clinical impact of the ePlex ® blood culture identification panels for the rapid diagnosis of bacteremia and fungemia. 2020;10:594951. https://doi.org/10.3389/fcimb.2020.594951 PMid:33324578 DOI: https://doi.org/10.3389/fcimb.2020.594951
Bauer KA, Perez KK, Forrest GN, Goff DA. Review of rapid diagnostic tests used by antimicrobial stewardship programs. Clin Infect Dis. 2014;59 Suppl 3:S134-45. https://doi.org/10.1093/cid/ciu547 PMid:25261540 DOI: https://doi.org/10.1093/cid/ciu547
Kollef MH. Broad-spectrum antimicrobials and the treatment of serious bacterial infections: Getting it right up front. Clin Infect Dis. 2008;47 Suppl 1:S3-13. https://doi.org/10.1086/590061 PMid:18713047 DOI: https://doi.org/10.1086/590061
Ibrahim EH, Sherman G, Ward S, Fraser VJ, Kollef MH. The influence of inadequate antimicrobial treatment of bloodstream infections on patient outcomes in the ICU setting. Chest. 2000;118(1):146-55. https://doi.org/10.1378/chest.118.1.146 PMid:10893372 DOI: https://doi.org/10.1378/chest.118.1.146
Singhal T, Shah S, Naik R. The microbial etiology and antimicrobial susceptibility of bloodstream infections in patients with cancer at a private tertiary care hospital in Mumbai, India. Indian J Cancer. 2016;53(3):452-3. https://doi.org/10.4103/0019-509X.200650 PMid:28244482
Jansen GJ, Mooibroek M, Idema J, Harmsen HJ, Welling GW, Degener JE. Rapid identification of bacteria in blood cultures by using fluorescently labeled oligonucleotide probes. J Clin Microbiol. 2000;38(2):814-7. https://doi.org/10.1128/jcm.38.2.814-817.2000 PMid:10655390 DOI: https://doi.org/10.1128/JCM.38.2.814-817.2000
Mancini N, Carletti S, Ghidoli N, Cichero P, Burioni R, Clementi M. The era of molecular and other non-culture-based methods in diagnosis of sepsis. Clin Microbiol Rev. 2010;23(1):235-51. https://doi.org/10.1128/CMR.00043-09 PMid:20065332 DOI: https://doi.org/10.1128/CMR.00043-09
Buehler SS, Madison B, Snyder SR, Derzon JH, Cornish NE, Saubolle MA, et al. Effectiveness of practices to increase timeliness of providing targeted therapy for inpatients with bloodstream infections: A laboratory medicine best practices systematic review and meta-analysis. Clin Microbiol Rev. 2015;29(1):59-103. https://doi.org/10.1128/CMR.00053-14 PMid:26598385 DOI: https://doi.org/10.1128/CMR.00053-14
Hensley DM, Tapia R, Encina Y. An evaluation of the advandx Staphylococcus aureus/CNS PNA FISH assay. Clin Lab Sci. 2009;22(1):30-3. https://doi.org/10.29074/ascls.22.1.30 PMid:19354026
Farina C, Perin S, Andreoni S, Conte M, Fazii P, Lombardi G, et al. Evaluation of the peptide nucleic acid fluorescence in situ hybridisation technology for yeast identification directly from positive blood cultures: An Italian experience. Mycoses. 2012;55(5):388-92. https://doi.org/10.1111/j.1439-0507.2011.02166.x PMid:22233292 DOI: https://doi.org/10.1111/j.1439-0507.2011.02166.x
Stender H. PNA FISH: An intelligent stain for rapid diagnosis of infectious diseases. Expert Rev Mol Diagn. 2003;3(5):649-55. https://doi.org/10.1586/14737159.3.5.649 PMid:14510184 DOI: https://doi.org/10.1586/14737159.3.5.649
Oliveira K, Procop GW, Wilson D, Coull J, Stender H. Rapid identification of Staphylococcus aureus directly from blood cultures by fluorescence in situ hybridization with peptide nucleic acid probes. J Clin Microbiol. 2002;40(1):247-51. https://doi.org/10.1128/JCM.40.1.247-251.2002 PMid:11773123 DOI: https://doi.org/10.1128/JCM.40.1.247-251.2002
Koncelik DL, Hernandez J. The impact of implementation of rapid QuickFISH testing for detection of coagulase-negative staphylococci at a community-based hospital. Am J Clin Pathol. 2016;145(1):69-74. https://doi.org/10.1093/AJCP/AQV005 PMid:26657205 DOI: https://doi.org/10.1093/ajcp/aqv005
Horváth A, Kristóf K, Konkoly-Thege M, Nagy K. Rapid identification of pathogens in blood culture with fluorescent in situ hybridization (FISH). Acta Microbiol Immunol Hung. 2010;57(3):225-34. https://doi.org/10.1556/AMicr.57.2010.3.7 PMid:20870594 DOI: https://doi.org/10.1556/AMicr.57.2010.3.7
Kempf VA, Trebesius K, Autenrieth IB. Fluorescent in situ hybridization allows rapid identification of microorganisms in blood cultures. J Clin Microbiol. 2000;38(2):830-8. https://doi.org/10.1128/jcm.38.2.830-838.2000 PMid:10655393 DOI: https://doi.org/10.1128/JCM.38.2.830-838.2000
Seo SK, Gedrimaite Z, Paskovaty A, Seier K, Morjaria S, Cohen N, et al. Impact of QuickFISH in addition to antimicrobial stewardship on vancomycin use and resource utilization in cancer patients with coagulase-negative staphylococcal blood cultures. Clin Microbiol Infect. 2018;24(12):1339.e7–12. https://doi.org/10.1016/J.CMI.2018.03.006 PMid:29549061 DOI: https://doi.org/10.1016/j.cmi.2018.03.006
Forrest GN, Mankes K, Jabra-Rizk MA, Weekes E, Johnson JK, Lincalis DP, et al. Peptide nucleic acid fluorescence in situ hybridization-based identification of Candida albicans and its impact on mortality and antifungal therapy costs. J Clin Microbiol. 2006;44(9):3381-3. https://doi.org/10.1128/JCM.00751-06 PMid:16954279 DOI: https://doi.org/10.1128/JCM.00751-06
Downloads
Published
How to Cite
License
Copyright (c) 2022 Gergana Lengerova, Yordan Kalchev , Zoya Rachkovska, Ralitsa Raycheva , Michael Petrov, Marianna Murdjeva (Author)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
http://creativecommons.org/licenses/by-nc/4.0