Metal Ion Emission and Corrosion Resistance of 3D-Printed Dental Alloy

Authors

  • Zlatina Tomova Department of Prosthetic Dental Medicine, Faculty of Dental Medicine, Medical University of Plovdiv, Plovdiv, Bulgaria https://orcid.org/0000-0003-1607-2829
  • Angelina Vlahova Department of Prosthetic Dental Medicine, Faculty of Dental Medicine, Medical University of Plovdiv, Plovdiv, Bulgaria
  • Iliyana Stoeva Department of Diagnostic Imaging, Dental Allergology and Physiotherapy, Faculty of Dental Medicine, Medical University of Plovdiv, Plovdiv, Bulgaria https://orcid.org/0000-0002-4771-6589
  • Yanko Zhekov Department of Prosthetic Dental Medicine, Faculty of Dental Medicine, Medical University of Plovdiv, Plovdiv, Bulgaria
  • Elena Vasileva Department of Prosthetic Dental Medicine, Faculty of Dental Medicine, Medical University of Plovdiv, Plovdiv, Bulgaria https://orcid.org/0000-0002-2718-0094

DOI:

https://doi.org/10.3889/oamjms.2022.8577

Keywords:

Base dental alloy, DMLS, Corrosion, ICP-MS

Abstract

Background: Prosthetic rehabilitation requires application of materials with different chemical, mechanical and biological properties which must provide longevity, esthetics, and safe use. Corrosion resistance and metal ion emission are the major factors defining biocompatibility of base dental alloys. Digitalization in Dentistry leads to development of new materials suitable for CAD/CAM technologies. Cobalt-chromium powder alloys are used for additive manufacturing of PFM crowns.

The aim of this study is to evaluate corrosion resistance and metal ion emission of Cobalt-chromium dental alloy for 3D printing.

Materials and methods: 35 metal copings were designed using digital files of intraoral scans of 35 patients. CoCr dental alloy EOS CobaltChrome SP2 (EOS, Germany) was used to produce the copings by DMLS (direct laser metal sintering). Tests for presence of free Cobalt ions were conducted at several stages of the production process. Open circuit potential measurements were conducted 2 hours, 24 hours, and 7 days after placing the copings in artificial saliva. Metal ion emission was assessed by inductively coupled plasma mass spectrometry (ICP–MS) after 24 hour- and 7 day-period of stay in the solution.

Results: Tests for free Cobalt ions were positive at all stages during production of the metal copings. Eocp measurements showed high corrosion resistance which increased in time. ICP-MS showed significantly higher amount of cobalt and chromium ions after 7-day period of stay compared to 24-hour period.

Conclusion: Studied alloy showed high corrosion resistance at in vitro conditions. Detected ion emission requires further investigations on the biological properties.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

Fan D, Li Y, Wang X, Zhu T, Wang Q, Cai H, et al. Progressive 3D printing technology and its application in medical materials. Front Pharmacol. 2020;11:122. http://doi.org/10.3389/fphar.2020.00122 PMid:32265689 DOI: https://doi.org/10.3389/fphar.2020.00122

Dental vocabulary - Part 1: General and Clinical Terms. Available from: https://www.iso.org/standard/6647.html [Last accessed on 2021 Dec 21].

Prasad K, Bazaka O, Chua M, Rochford M, Fedrick L, Spoor J, et al. Metallic biomaterials: Current challenges and opportunities. Materials (Basel). 2017;10(8):884. http://doi.org/10.3390/ma10080884 PMid:28773240 DOI: https://doi.org/10.3390/ma10080884

Rokaya D, Srimaneepong V, Qin J. Modification of titanium alloys for dental applications. In: Rajendran S, Naushad M, Durgalakshmi D, Lichtfouse E, editors. Metal, Metal Oxides and Metal Sulphides for Biomedical Applications. Cham: Springer; 2021. https://doi.org/10.1007/978-3-030-56413-1_2 DOI: https://doi.org/10.1007/978-3-030-56413-1_2

Rokaya D, Bohara S, Srimaneepong V, Sapkota J, Kongkiatkamon S, Sultan Z, et al. Metallic biomaterials for medical and dental prosthetic applications. In: Jana S, Jana S, editors. Functional Biomaterials: Drug Delivery and Biomedical Applications. 1st ed. Singapore: Springer; 2022.

Eliaz N. Corrosion of metallic biomaterials: A review. Materials (Basel). 2019;12(3):407. http://doi.org/10.3390/ma12030407 PMid:30696087 DOI: https://doi.org/10.3390/ma12030407

Upadhyay D, Panchal MA, Dubey RS, Srivastava VK. Corrosion of alloys used in dentistry: A review. Mater Sci Eng A. 2006;432(1-2):1-11. DOI: https://doi.org/10.1016/j.msea.2006.05.003

Srimaneepong V, Rokaya D, Thunyakitpisal P, Qin J, Saengkiettiyut K. Corrosion resistance of graphene oxide/ silver coatings on Ni-Ti alloy and expression of IL-6 and IL-8 in human oral fibroblasts. Sci Rep. 2020;10(1):3247. http://doi.org/10.1038/s41598-020-60070-x PMid:32094428 DOI: https://doi.org/10.1038/s41598-020-60070-x

Akbar M, Brewer JM, Grant MH. Effect of chromium and cobalt ions on primary human lymphocytes in vitro. J Immunotoxicol. 2011;8(2):140-9. http://doi.org/10.3109/1547691X.2011.553845 PMid:21446789 DOI: https://doi.org/10.3109/1547691X.2011.553845

Leyssens L, Vinck B, Van Der Straeten C, De Smet K, Dhooge I, Wuyts FL, et al. The ototoxic potential of cobalt from metal-on-metal hip implants: Objective auditory and vestibular outcome. Ear Hear. 2020;41(1):217-30. http://doi.org/10.1097/AUD.0000000000000747 PMid:31169566 DOI: https://doi.org/10.1097/AUD.0000000000000747

Pan Y, Jiang L, Lin H, Cheng H. Cell death affected by dental alloys: Modes and mechanisms. Dent Mater J. 2017;36(1):82-7. http://doi.org/10.4012/dmj.2016-154 PMid:27928106 DOI: https://doi.org/10.4012/dmj.2016-154

Faccioni F, Franceschetti P, Cerpelloni M, Fracasso ME. In vivo study on metal release from fixed orthodontic appliances and DNA damage in oral mucosa cells. Am J Orthod Dentofac Orthop. 2003;124(6):687-93; discussion 693-4. http://doi.org/10.1016/j.ajodo.2003.09.010 PMid:14666083 DOI: https://doi.org/10.1016/j.ajodo.2003.09.010

Keegan GM, Learmonth ID, Case CP. A systematic comparison of the actual, potential, and theoretical health effects of cobalt and chromium exposures from industry and surgical implants. Crit Rev Toxicol. 2008;38(8):645-74. http://doi.org/10.1080/10408440701845534 PMid:18720105 DOI: https://doi.org/10.1080/10408440701845534

Poljak-Guberina R, Knezović-Zlatarić D, Katunarić M. Dental alloys and corrosion resistance. Acta Stomatol Croat. 2002;36(4):447-50.

Pourbaix M. Electrochemical corrosion of metallic biomaterials. Biomaterials. 1984;5(3):122-34. http://doi.org/10.1016/0142-9612(84)90046-2 PMid:6375748 DOI: https://doi.org/10.1016/0142-9612(84)90046-2

Botushanov P, Vladimirov S. Endodontics: Theory and Practice. Plovdiv: Autospectre; 2001.

Ahmed KE. We’re Going Digital: The current state of CAD/CAM dentistry in prosthodontics. Prim Dent J. 2018;7(2):30-5. http://doi.org/10.1177/205016841800700205 PMid:30095879 DOI: https://doi.org/10.1177/205016841800700205

Velásquez-García LF, Kornbluth Y. Biomedical applications of metal 3D printing. Annu Rev Biomed Eng. 2021;23:307-38. http://doi.org/10.1146/annurev-bioeng-082020-032402 PMid:34255995 DOI: https://doi.org/10.1146/annurev-bioeng-082020-032402

Ni J, Ling H, Zhang S, Wang Z, Peng Z, Benyshek C, et al. Three-dimensional printing of metals for biomedical applications. Mater Today Bio. 2019;3:100024. http://doi.org/10.1016/j.mtbio.2019.100024 PMid:32159151 DOI: https://doi.org/10.1016/j.mtbio.2019.100024

Chua K, Khan I, Malhotra R, Zhu D. Additive manufacturing and 3D printing of metallic biomaterials. Eng Regen. 2021;2:288-99. DOI: https://doi.org/10.1016/j.engreg.2021.11.002

ISO/ASTM FDIS 52900: 2021. Additive Manufacturing. General Principles. Fundamentals and Vocabulary; 2021.

Takaichi A, Suyalatu, Nakamoto T, Joko N, Nomura N, Tsutsumi Y, et al. Microstructures and mechanical properties of Co-29Cr-6Mo alloy fabricated by selective laser melting process for dental applications. J Mech Behav Biomed Mater. 2013;21:67-76. http://doi.org/10.1016/j.jmbbm.2013.01.021 PMid:23500549 DOI: https://doi.org/10.1016/j.jmbbm.2013.01.021

Reiser A, Lindén M, Rohner P, Marchand A, Galinski H, Sologubenko A, et al. Multi-metal electrohydrodynamic redox 3D printing at the submicron scale. Nat Commun. 2019;10:1853. http://doi.org/10.1038/s41467-019-09827-1 PMid:31015443 DOI: https://doi.org/10.1038/s41467-019-09827-1

Xin XZ, Chen J, Xiang N, Gong Y, Wei B. Surface characteristics and corrosion properties of selective laser melted Co-Cr dental alloy after porcelain firing. Dent Mater. 2014;30(3):263-70. http://doi.org/10.1016/j.dental.2013.11.013 PMid:24388219 DOI: https://doi.org/10.1016/j.dental.2013.11.013

Konieczny B, Szczesio-Wlodarczyk A, Sokolowski J, Bociong K. Challenges of Co-Cr alloy additive manufacturing methods in dentistry-the current state of knowledge (systematic review). Materials (Basel). 2020;13(16):3524. http://doi.org/10.3390/ma13163524 PMid:32785055 DOI: https://doi.org/10.3390/ma13163524

Hedberg YS, Qian B, Shen Z, Virtanen S, Odnevall Wallinder I. In vitro biocompatibility of CoCrMo dental alloys fabricated by selective laser melting. Dent Mater. 2014;30(5):525-34. http://doi.org/10.1016/j.dental.2014.02.008 PMid:24598762 DOI: https://doi.org/10.1016/j.dental.2014.02.008

Okazaki Y, Ishino A, Higuchi S. Chemical, physical, and mechanical properties and microstructures of laser-sintered Co-25Cr-5Mo-5W (SP2) and W-free Co-28Cr-6Mo alloys for dental applications. Materials (Basel). 2019;12(24):4039. http://doi.org/10.3390/ma12244039 PMid:31817292 DOI: https://doi.org/10.3390/ma12244039

ISO 10271: 2011-Corrosion Test Methods for Metallic Materials; 2011. Available from: https://www.iso.org/standard/73445.html. [Last accessed on 2021 Dec 21].

Jeffery PG, Hutchinson D. Cobalt. Chem Methods Rock Anal. 1981; 3:155-9. Available from: https://www.linkinghub.elsevier.com/retrieve/pii/B9780080238067500233. [Last accessed on 2021 Dec 21]. DOI: https://doi.org/10.1016/B978-0-08-023806-7.50023-3

Chemo Cobalt TestTM CoT. Available from: https://www.chemotechnique.se/print/products/misc/chemo-cobalt-test. [Last accessed on 2021 Dec 21].

Tuna SH, Pekmez NÖ, Keyf F, Canli F. The influence of the pure metal components of four different casting alloys on the electrochemical properties of the alloys. Dent Mater. 2009;25(9):1096-103. http://doi.org/10.1016/j.dental.2009.02.013 PMid:19380161 DOI: https://doi.org/10.1016/j.dental.2009.02.013

EC Number: 231-158-0; DNEL. Available from: https://www.echa.europa.eu/bg/registration-dossier/-/registered-dossier/15506. [Last accessed on 2021 Dec 21].

Alvarez K, Hyun SK, Fujimoto S, Nakajima H. In vitro corrosion resistance of Lotus-type porous Ni-free stainless steels. J Mater Sci Mater Med. 2008;19(11):3385-97. http://doi.org/10.1007/s10856-008-3458-6 PMid:18545945 DOI: https://doi.org/10.1007/s10856-008-3458-6

Aldhohrah T, Yang J, Guo J, Zhang H, Wang Y. Ion release and biocompatibility of Co-Cr alloy fabricated by selective laser melting from recycled Co-Cr powder: An in vitro study. J Prosthet Dent. 2021;12:S0022-3913(21)00491-1. http://doi.org/10.1016/j.prosdent.2021.09.003 PMid:34782150 DOI: https://doi.org/10.1016/j.prosdent.2021.09.003

Downloads

Published

2022-03-01

How to Cite

1.
Tomova Z, Vlahova A, Stoeva I, Zhekov Y, Vasileva E. Metal Ion Emission and Corrosion Resistance of 3D-Printed Dental Alloy. Open Access Maced J Med Sci [Internet]. 2022 Mar. 1 [cited 2024 Apr. 19];10(D):143-7. Available from: https://oamjms.eu/index.php/mjms/article/view/8577

Most read articles by the same author(s)