Wound Healing Activity of Nanoemulgel Containing Artocarpus lakoocha Roxb. Extract on Burns Model in Rat
DOI:
https://doi.org/10.3889/oamjms.2022.8589Keywords:
Ethanol extract of mobe leaves, Nanoemulgel, Fibroblast cell, Platelet-derived growth factor BB, Transforming growth factor beta 1Abstract
BACKGROUND: The content of secondary metabolites in mobe leaves has the potential to be used in wound healing. Artocarpine, one of the secondary metabolites found in mobe leaves, is reported to affect the expression of transforming growth factor-beta (TGF-β) protein, thereby increasing fibroblast cell proliferation and accelerating the wound healing process.
AIM: This study aims to determine the wound healing activity of nanoemulgel-containing ethanol extract of mobe leaves.
MATERIALS AND METHODS: The method used in this study was experimental using chemicals ethanol 96%, Carbopol 940, PEG 400, Propylene glycol, Methyl Paraben, Propyl Paraben, Triethanolamine, Aqua Destillata. Mode leaves which were taken purposively were then formulated in nanoemulgel preparations which were tested for wound healing in male rats. The nanoemulgel preparation was then evaluated which included homogeneity, emulsion type, pH, viscosity, dispersion, and measurement of the nanoemulgel globules of mobe leaf extract, stability of the nanoemulgel preparation. Tests for the healing effect of burns were carried out on male rats for 14 days.
RESULTS: Mobe leaves ethanol extract can be formulated into nanoemulgel dosage forms. This study showed wound healing activity of nanoemulgels with concentration variation of mobe leaves ethanol extract. The percentage of wound diameter reducing and fibroblast cells value were showed to increase and significantly different to negative control (p < 0.05) in 14 days. Platelet-derived growth factor (PDGF)-BB and TGF-β1 immunoexpression evaluation result showed significantly different to Blanko group (p < 0.05) in 14-day observation.
CONCLUSION: From this study, nanoemulgel mobe can stimulate more fibroblast cell proliferation by greatly expressing TGF-β1 and PDGF BB in burn wounds.Downloads
Metrics
Plum Analytics Artifact Widget Block
References
Rowan MP, Cancio LC, Elster EC, Burmeister DM, Rose LF, Natesan S, et al. Burn wound healing and treatment: Review and advancements. Crit Care. 2015;19(1):1-12. https://doi.org/10.1186/s13054-015-0961-2 PMid:26067660 DOI: https://doi.org/10.1186/s13054-015-0961-2
Wang Y, Beekman J, Hew J, Jackson S, Issler-Fisher AC, Parungao R et al. Burn injury: Challenges and advances in burn wound healing, infection, pain and scarring. Adv Drug Deliv Rev. 2018;123:3-17. https://doi.org/10.1016/j.addr.2017.09.018 DOI: https://doi.org/10.1016/j.addr.2017.09.018
Oryan A, Alemzadeh E, Moshiri A. Burn wound healing: Present concepts, treatment strategies and future directions. J Wound Care. 2017;26(1):5-19. https://doi.org/10.12968/jowc.2017.26.1.5 DOI: https://doi.org/10.12968/jowc.2017.26.1.5
Fahimi S, Abdollahi M, Mortazavi SA, Hajimehdipoor H, Abdolghaffari AH, Rezvanfa MA. Wound healing activity of a traditionally used poly herbal product in a burn wound model in rats. Iran. Red Crescent Med J. 2015;17(9):e19960. https://doi.org/10.5812/ircmj.19960 PMid:26473072 DOI: https://doi.org/10.5812/ircmj.19960
El-Kased RF, Amer RI, Attia D, Elmazar MM. Honey-based hydrogel: In vitro and comparative in vivo evaluation for burn wound healing. Sci Rep. 2017;7(1):1-11. https://doi.org/10.1038/s41598-017-08771-8 PMid:28851905 DOI: https://doi.org/10.1038/s41598-017-08771-8
Jagtap UB. Bapat VA. Artocarpus: A review of its traditional uses, phytochemistry and pharmacology. J Ethnopharmacol. 2010;129(2):142-66. https://doi.org/10.1016/j.jep.2010.03.031 PMid:20380874 DOI: https://doi.org/10.1016/j.jep.2010.03.031
Zaitun Hasibuan PA, Mardiana M. Antioxidant activity of n-hexane, ethyl acetate and ethanol extract from lakoocha leaves (Artocarpus lacucha Buch.-Ham) using DPPH Method. Indones J Pharm Clin Res. 2018;1(2):41-7. https://doi.org/10.32734/idjpcr.v1i2.433 DOI: https://doi.org/10.32734/idjpcr.v1i2.433
Gupta AK, Rather MA, Kumar Jha A, Shashank A, Singhal S, Sharma M, et al. Artocarpus lakoocha roxb. And artocarpus heterophyllus lam. flowers: New sources of bioactive compounds. Plants. 2020;9(10):1329. https://doi.org/10.3390/plants9101329 DOI: https://doi.org/10.3390/plants9101329
Lee CW, Ko HH, Lin CC, Chai CY, Chen WT, Yen FL. Artocarpin attenuates ultraviolet B-induced skin damage in hairless mice by antioxidant and anti-inflammatory effect. Food Chem Toxicol. 2013;60:123-9. https://doi.org/10.1016/j.fct.2013.07.029 PMid:23871788 DOI: https://doi.org/10.1016/j.fct.2013.07.029
Wong SK, Tangah J, Chan HT, Chan EW. Chemistry and pharmacology of artocarpin: An isoprenyl flavone from artocarpus species. Syst Rev Pharm. 2018;9(1):58-63. https://doi.org/10.5530/srp.2018.1.12 DOI: https://doi.org/10.5530/srp.2018.1.12
Bueno FG, Panizzon GP, de Leite Mello EV, Lechtenberg M, Petereit F, de Mello, et al. Hydrolyzable tannins from hydroalcoholic extract from poincianella pluviosa stem bark and its wound-healing properties: Phytochemical investigations and influence on in vitro cell physiology of human keratinocytes and dermal fibroblasts. Fitoterapia. 2014;99:252-60. https://doi.org/10.1016/j.fitote.2014.10.007 PMid:25454458 DOI: https://doi.org/10.1016/j.fitote.2014.10.007
Carvalho MT, Araújo-Filho HG, Barreto AS, Quintans-Júnior LC, Quintans JS. Barretoss. Wound healing properties of flavonoids: A systematic review highlighting the mechanisms of action. Phytomedicine, 2021;90:153636. https://doi.org/10.1016/j.phymed.2021.153636 PMid:34333340 DOI: https://doi.org/10.1016/j.phymed.2021.153636
Choudhury H, Gorain B, Pandey M, Chatterjee LA, Sengupta P, Das A, et al. Recent update on nanoemulgel as topical drug delivery system. J Pharm Sci. 2017;106(7):1736-51. https://doi.org/10.1016/j.xphs.2017.03.042 PMId:8412398 DOI: https://doi.org/10.1016/j.xphs.2017.03.042
Pachuau L. Recent developments in novel drug delivery systems for wound healing. Expert Opin Drug Deliv. 2015;12(12):1895-909. https://doi.org/10.1517/17425247.2015.1070143 PMid:26289672 DOI: https://doi.org/10.1517/17425247.2015.1070143
Liu H, Wang C, Li C, Qin Y, Wang Z, Yang F, et al. A functional chitosan-based hydrogel as a wound dressing and drug delivery system in the treatment of wound healing. RSC Adv. 2018;8(14):7533-49. https://doi.org/10.1039/c7ra13510f DOI: https://doi.org/10.1039/C7RA13510F
Morsy MA, Abdel-Latif RG, Nair AB, Venugopala KN, Ahmed AF, Elsewedy HS, et al. Preparation and evaluation of atorvastatin-loaded nanoemulgel on wound-healing efficacy. Pharmaceutics. 2019;11(11):1-15. https://doi.org/10.3390/pharmaceutics11110609 PMid:31766305 DOI: https://doi.org/10.3390/pharmaceutics11110609
Algahtani MS, Ahmad MZ, Shaikh IA, Abdel-Wahab BA, Nourein IH, Ahmad J. Thymoquinone loaded topical nanoemulgel for wound healing: Formulation design and in-vivo evaluation. Molecules. 2021;26(13):1-16. https://doi.org/10.3390/molecules26133863 PMid:34202733 DOI: https://doi.org/10.3390/molecules26133863
Alyoussef A, El-Gogary RI, Ahmed RF, Farid OA, Bakeer RM, Nasr M. The beneficial activity of curcumin and resveratrol loaded in nanoemulgel for healing of burn-induced wounds. J Drug Deliv Sci Technol. 2021;62:102360. https://doi.org/10.1016/j.jddst.2021.102360 DOI: https://doi.org/10.1016/j.jddst.2021.102360
Rosidah R, Yuandani Y, Widjaja SS, Auliafendri N, Lubis MF, Muhammad M, et al. Phytochemicals analysis and immunomodulatory activity of saurauia vulcani korth. Leaves extracts towards raw 264.7 cell. Rasayan J Chem. 2021;14(2):1378-83. https://doi.org/10.31788/rjc.2021.1426075 DOI: https://doi.org/10.31788/RJC.2021.1426075
Kathpalia H, Shreya KK. Topical nanoemmigel formulation of boswellia serrata. Indian J Pharm Sci. 2018;80(2):261-7. https://doi.org/10.4172/pharmaceutical-sciences.1000353 DOI: https://doi.org/10.4172/pharmaceutical-sciences.1000353
Grace XF. Fabrication and characterization of pongamia pinnata leaf and bark extracts loaded nanoemmigel. J Pharm Sci Res. 2021;13(7):369-373.
Mulleria SS, Marina K, Ghetia SM. Formulation, optimization and in vitro evaluation of apremilast nanoemulgel for topical delivery. Int J Pharm Investig. 2021;11(2):230-7. https://doi.org/10.5530/ijpi.2021.2.41 DOI: https://doi.org/10.5530/ijpi.2021.2.41
Arianto A, Lie DY, Sumaiyah S, Bangun H. Preparation and evaluation of nanoemulgels containing a combination of grape seed oil and anisotriazine as sunscreen. Open Access Maced. J Med Sci. 2020;8(B):994-9. https://doi.org/10.3889/oamjms.2020.5293 DOI: https://doi.org/10.3889/oamjms.2020.5293
Algahtani MS, Ahmad MZ, Nourein IH, Albarqi HA, Alyami HS, Alyami MH, et al. Preparation and characterization of curcumin nanoemulgel utilizing ultrasonication technique for wound healing: In vitro, ex vivo, and in vivo evaluation. Gels. 2021;7(4):1-17. https://doi.org/10.3390/gels7040213 DOI: https://doi.org/10.3390/gels7040213
Farzadinia P, Jofreh N, Khatamsaz S, Movahed A, Akbarzadeh S, Mohammadi M, et al. Anti-inflammatory and wound healing activities of aloe vera, honey and milk ointment on second-degree burns in rats. Int J Low Extrem Wounds. 2016;15(3):241-7. https://doi.org/10.1177/1534734616645031 PMid:27217089 DOI: https://doi.org/10.1177/1534734616645031
Amutha K, Selvakumari U. Wound healing activity of methanolic stem extract of Musa paradisiaca Linn. (Banana) in Wistar albino rats. Int Wound J. 2016;13(5):763-7. https://doi.org/10.1111/iwj.12371 PMid:25224162 DOI: https://doi.org/10.1111/iwj.12371
Silalahi J, Surbakti C. Burn wound healing activity of hydrolyzed virgin coconut oil. Int J PharmTech Res. 2015;8(1):67-73.
Somboonwong J, Kankaisre M, Tantisira B, Tantisira MH. Wound healing activities of different extracts of Centella asiatica in incision and burn wound models: An experimental animal study. BMC Complement Altern Med. 2012;12:103. https://doi.org/10.1186/1472-6882-12-103 PMid:22817824 DOI: https://doi.org/10.1186/1472-6882-12-103
Akinci M, Ergul Z, Kantarcioglu M, Tapan S, Ozler M, Gunal A, et al. The effect of relaparotomy timing on wound healing in an animal model. Int J Surg. 2014;12(12):1434-8. https://doi.org/10.1016/j.ijsu.2014.10.013 DOI: https://doi.org/10.1016/j.ijsu.2014.10.013
Assar DH, Elhabashi N, Mokhbatly AA, Ragab AE, Elbialy ZI, Rizk SA, et al. Wound healing potential of licorice extract in rat model: Antioxidants, histopathological, immunohistochemical and gene expression evidences. Biomed Pharmacother. 2021;143:112151. https://doi.org/10.1016/j.biopha.2021.112151 PMid:34507115 DOI: https://doi.org/10.1016/j.biopha.2021.112151
Zebua N, Sijabat WG, Wulandari IA, Nofriani I, Zai WA, Arista RA, et al. Incision wound healing test of ethanolic extract gel from salaon (Parsonsia alboflavescens [dennst.] mabb.) leaves in male rats. Open Access Maced J Med Sci. 2021;9(A):776-81. https://doi.org/10.3889/oamjms.2021.6662 DOI: https://doi.org/10.3889/oamjms.2021.6662
Jian-Ping D, Jun C, Yu-Fei B, Bang-Xing H, Shang-Bin G, Li-Li J. Effects of pearl powder extract and its fractions on fibroblast function relevant to wound repair. Pharm Biol. 2010;48(2):122-7. https://doi.org/10.3109/13880200903046211 PMid:20645827 DOI: https://doi.org/10.3109/13880200903046211
Alemzadeh E, Oryan A, Mohammadi AA. Hyaluronic acid hydrogel loaded by adipose stem cells enhances wound healing by modulating IL-1β, TGF-β1, and bFGF in burn wound model in rat. J Biomed Mater Res B Appl Biomater. 2020;108(2):555-67. https://doi.org/10.1002/jbm.b.34411 PMid:31081996 DOI: https://doi.org/10.1002/jbm.b.34411
Pavliuk B, Stechyshyn I, Kramar S, Chubka M, Hroshovyi T. Therapeutic efficacy of the developed gel “Xeliogel” on a burn wound model in rats. Pol Merkur Lekarski. 2020;48(287)331-4. PMid:33130793
Momtaz S, Dibaj M, Abdollahi A, Amin G, Bahramsoltani R, Abdollahi M, et al. Wound healing activity of the flowers of Lilium candidum L. In burn wound model in rats. J Med Plants. 2020;19(73):109-18. https://doi.org/10.29252/jmp.1.73.109 DOI: https://doi.org/10.29252/jmp.1.73.109
Sonkar KS, Pachauri M, Kumar A, Shukla A, Patel M, Jagannadham MV. Heme-peroxidase from medicinal plant Artocarpus lakoocha: Purification, characterization and wound healing studies. Biocatal Agric Biotechnol. 2015;4(2):180-90. https://doi.org/10.1016/j.bcab.2015.03.002 DOI: https://doi.org/10.1016/j.bcab.2015.03.002
Ahmad J, Gautam A, Komath S, Bano M, Garg A, Jain K. Topical nano-emulgel for skin disorders: Formulation approach and characterization. Recent Pat Antiinfect Drug Discov. 2018;14(1):36-48. https://doi.org/10.2174/1574891x14666181129115213 DOI: https://doi.org/10.2174/1574891X14666181129115213
Elmarzugi NA, Chellapa P, Mohamed AT, Keleb EI, Elmahgoubi A, Eid AM, et al. Nanoemulsion and nanoemulgel as a topical formulation. IOSR J Pharm. 2015;5(10):43-7.
Sengupta P, Chatterjee B. Potential and future scope of nanoemulgel formulation for topical delivery of lipophilic drugs. Int J Pharma. 2017;526(1-2):353-65. https://doi.org/10.1016/j.ijpharm.2017.04.068 PMid:28461261 DOI: https://doi.org/10.1016/j.ijpharm.2017.04.068
Fronza M, Heinzmann B, Hamburger M, Laufer S, Merfort I. Determination of the wound healing effect of Calendula extracts using the scratch assay with 3T3 fibroblasts. J Ethnopharmacol. 2009;126(3):463-7. https://doi.org/10.1016/j.jep.2009.09.014 PMid:19781615 DOI: https://doi.org/10.1016/j.jep.2009.09.014
Adetutu A, Morgan WA, Corcoran O. Antibacterial, antioxidant and fibroblast growth stimulation activity of crude extracts of Bridelia ferruginea leaf, a wound-healing plant of Nigeria. J Ethnopharmacol. 2011;133(1):116-9. https://doi.org/10.1016/j.jep.2010.09.011 PMid:20863876 DOI: https://doi.org/10.1016/j.jep.2010.09.011
Davoudi-Kiakalayeh A, Mohammadi R, Pourfathollah AA, Siery Z, Davoudi-Kiakalayeh S. Alloimmunization in thalassemia patients: New insight for healthcare. Int J Prev Med. 2017;8:101. https://doi.org/10.4103/ijpvm.IJPVM PMid:29291043 DOI: https://doi.org/10.4103/ijpvm.IJPVM_246_16
Gallego-Muñoz P, Ibares-Frías L, Valsero-Blanco MC, Cantalapiedra-Rodriguez R, Merayo-Lloves J, Martínez-García MC. Effects of TGFβ1, PDGF-BB, and bFGF, on human corneal fibroblasts proliferation and differentiation during stromal repair. Cytokine. 2017;96:94-101. https://doi.org/10.1016/j.cyto.2017.03.011 PMid:28390267 DOI: https://doi.org/10.1016/j.cyto.2017.03.011
Park SA, Raghunathan VK, Shah NM, Teixeira L, Motta MJ, Covert J, et al. PDGF-BB does not accelerate healing in diabetic mice with splinted skin wounds. PLoS One. 2014;9(8):e104447. https://doi.org/10.1371/journal.pone.0104447 PMid:25121729 DOI: https://doi.org/10.1371/journal.pone.0104447
Deptuła M, Karpowicz P, Wardowska A, Sass P, Sosnowski P, Mieczkowska A, et al. Development of a peptide derived from platelet-derived growth factor (PDGF-BB) into a potential drug candidate for the treatment of wounds. Adv Wound Care. 2020;9(12):657-75. https://doi.org/10.1089/wound.2019.1051 PMid:33124966 DOI: https://doi.org/10.1089/wound.2019.1051
Barrientos S, Stojadinovic O, Golinko MS, Brem H, Tomic- Canic M. Growth factors and cytokines in wound healing. Wound Repair Regen. 2008;16(5):585-601. https://doi.org/10.1111/j.1524-475X.2008.00410.x PMid:19128254 DOI: https://doi.org/10.1111/j.1524-475X.2008.00410.x
Penn JW, Grobbelaar AO, Rolfe KJ. The role of the TGF-β family in wound healing, burns and scarring: A review. Int. J. Burns Trauma. 2012;2(1):18-28. PMid:22928164
Lichtman MK, Otero-Vinas M, Falanga V. Transforming growth factor beta (TGF-β) isoforms in wound healing and fibrosis. Wound Repair Regen. 2016;24(2):215-22. https://doi.org/10.1111/wrr.12398 PMid:26704519 DOI: https://doi.org/10.1111/wrr.12398
Singhatong S, Leelarungrayub D, Chaiyasut C. Antioxidant and toxicity activities of artocarpus lakoocha roxb. Heartwood extract. J Med Plants Res. 2010;4(10):947-53. https://doi.org/10.5897/JMPR10.133
Pang Y, Zhang Y, Huang L, Xu L, Wang K, Wang D, et al. Effects and mechanisms of total flavonoids from Blumea balsamifera (L.) DC. On skin wound in rats. Int J Mol Sci. 2017;18(12):2766. https://doi.org/10.3390/ijms18122766 PMid:29257119 DOI: https://doi.org/10.3390/ijms18122766
Li W, Kandhare AD, Mukherjee AA, Bodhankar SL. Hesperidin, a plant flavonoid accelerated the cutaneous wound healing in streptozotocin-induced diabetic rats: Role of TGF-B/SMADS and ANG-1/TIE-2 signaling pathways. EXCLI J. 2018;17:399-419. https://doi.org/10.17179/excli2018-1036 PMid:29805347
Nazaruk J, Galicka A. The influence of selected flavonoids from the leaves of Cirsium palustre (L.) Scop. On collagen expression in human skin fibroblasts. Phyther Res. 2014;28(9):1399-405. https://doi.org/10.1002/ptr.5143 PMid:24643916 DOI: https://doi.org/10.1002/ptr.5143
Pereira-da-Silva G, Roque-Barreira MC, Van Damme EJ. Artin M. A rational substitution for the names artocarpin and KM+. Immunol Lett. 2008;119(1-2):114-5. https://doi.org/10.1016/j.imlet.2008.06.002 PMid:18602950 DOI: https://doi.org/10.1016/j.imlet.2008.06.002
Daud NN, Septama A, Simbak N, Rahmi E. The phytochemical and pharmacological properties of artocarpin from Artocarpus heterophyllus. Asian Pac J Trop Med. 2020;13(1):1-7. https://doi.org/10.4103/1995-7645.273567 DOI: https://doi.org/10.4103/1995-7645.273567
Downloads
Published
How to Cite
License
Copyright (c) 2022 Siti Aisyah Tanjung, Jansen Silalahi, Julia Reveny (Author)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
http://creativecommons.org/licenses/by-nc/4.0